Metamath Proof Explorer


Theorem zfallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion zfallfaccl ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 zsscn ℤ ⊆ ℂ
2 1z 1 ∈ ℤ
3 zmulcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ )
4 nn0z ( 𝑘 ∈ ℕ0𝑘 ∈ ℤ )
5 zsubcl ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝐴𝑘 ) ∈ ℤ )
6 4 5 sylan2 ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴𝑘 ) ∈ ℤ )
7 1 2 3 6 fallfaccllem ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) ∈ ℤ )