Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfallfaccl | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( A FallFac N ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn | |- ZZ C_ CC |
|
| 2 | 1z | |- 1 e. ZZ |
|
| 3 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 4 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 5 | zsubcl | |- ( ( A e. ZZ /\ k e. ZZ ) -> ( A - k ) e. ZZ ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. ZZ /\ k e. NN0 ) -> ( A - k ) e. ZZ ) |
| 7 | 1 2 3 6 | fallfaccllem | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( A FallFac N ) e. ZZ ) |