Metamath Proof Explorer


Theorem ntrl2v2e

Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e , but not a trail. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses wlk2v2e.i 𝐼 = ⟨“ { 𝑋 , 𝑌 } ”⟩
wlk2v2e.f 𝐹 = ⟨“ 0 0 ”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“ 𝑋 𝑌 𝑋 ”⟩
wlk2v2e.g 𝐺 = ⟨ { 𝑋 , 𝑌 } , 𝐼
Assertion ntrl2v2e ¬ 𝐹 ( Trails ‘ 𝐺 ) 𝑃

Proof

Step Hyp Ref Expression
1 wlk2v2e.i 𝐼 = ⟨“ { 𝑋 , 𝑌 } ”⟩
2 wlk2v2e.f 𝐹 = ⟨“ 0 0 ”⟩
3 wlk2v2e.x 𝑋 ∈ V
4 wlk2v2e.y 𝑌 ∈ V
5 wlk2v2e.p 𝑃 = ⟨“ 𝑋 𝑌 𝑋 ”⟩
6 wlk2v2e.g 𝐺 = ⟨ { 𝑋 , 𝑌 } , 𝐼
7 0z 0 ∈ ℤ
8 1z 1 ∈ ℤ
9 7 8 7 3pm3.2i ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ )
10 0ne1 0 ≠ 1
11 s2prop ( ( 0 ∈ ℤ ∧ 0 ∈ ℤ ) → ⟨“ 0 0 ”⟩ = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ } )
12 7 7 11 mp2an ⟨“ 0 0 ”⟩ = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
13 2 12 eqtri 𝐹 = { ⟨ 0 , 0 ⟩ , ⟨ 1 , 0 ⟩ }
14 13 fpropnf1 ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ 0 ≠ 1 ) → ( Fun 𝐹 ∧ ¬ Fun 𝐹 ) )
15 9 10 14 mp2an ( Fun 𝐹 ∧ ¬ Fun 𝐹 )
16 15 simpri ¬ Fun 𝐹
17 16 intnan ¬ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 )
18 istrl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 ) )
19 17 18 mtbir ¬ 𝐹 ( Trails ‘ 𝐺 ) 𝑃