Metamath Proof Explorer


Theorem ntrl2v2e

Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e , but not a trail. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses wlk2v2e.i I=⟨“XY”⟩
wlk2v2e.f F=⟨“00”⟩
wlk2v2e.x XV
wlk2v2e.y YV
wlk2v2e.p P=⟨“XYX”⟩
wlk2v2e.g G=XYI
Assertion ntrl2v2e ¬FTrailsGP

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I=⟨“XY”⟩
2 wlk2v2e.f F=⟨“00”⟩
3 wlk2v2e.x XV
4 wlk2v2e.y YV
5 wlk2v2e.p P=⟨“XYX”⟩
6 wlk2v2e.g G=XYI
7 0z 0
8 1z 1
9 7 8 7 3pm3.2i 010
10 0ne1 01
11 s2prop 00⟨“00”⟩=0010
12 7 7 11 mp2an ⟨“00”⟩=0010
13 2 12 eqtri F=0010
14 13 fpropnf1 01001FunF¬FunF-1
15 9 10 14 mp2an FunF¬FunF-1
16 15 simpri ¬FunF-1
17 16 intnan ¬FWalksGPFunF-1
18 istrl FTrailsGPFWalksGPFunF-1
19 17 18 mtbir ¬FTrailsGP