Metamath Proof Explorer


Theorem 3wlkdlem1

Description: Lemma 1 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
Assertion 3wlkdlem1 P=F+1

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 1 fveq2i P=⟨“ABCD”⟩
4 s4len ⟨“ABCD”⟩=4
5 df-4 4=3+1
6 4 5 eqtri ⟨“ABCD”⟩=3+1
7 2 fveq2i F=⟨“JKL”⟩
8 s3len ⟨“JKL”⟩=3
9 7 8 eqtr2i 3=F
10 9 oveq1i 3+1=F+1
11 6 10 eqtri ⟨“ABCD”⟩=F+1
12 3 11 eqtri P=F+1