Metamath Proof Explorer


Theorem fpropnf1

Description: A function, given by an unordered pair of ordered pairs, which is not injective/one-to-one. (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021)

Ref Expression
Hypothesis fpropnf1.f F=XZYZ
Assertion fpropnf1 XUYVZWXYFunF¬FunF-1

Proof

Step Hyp Ref Expression
1 fpropnf1.f F=XZYZ
2 id XUYVXUYV
3 2 3adant3 XUYVZWXUYV
4 3 adantr XUYVZWXYXUYV
5 id ZWZW
6 5 5 jca ZWZWZW
7 6 3ad2ant3 XUYVZWZWZW
8 7 adantr XUYVZWXYZWZW
9 simpr XUYVZWXYXY
10 4 8 9 3jca XUYVZWXYXUYVZWZWXY
11 funprg XUYVZWZWXYFunXZYZ
12 10 11 syl XUYVZWXYFunXZYZ
13 1 funeqi FunFFunXZYZ
14 12 13 sylibr XUYVZWXYFunF
15 neneq XY¬X=Y
16 15 adantl XUYVZWXY¬X=Y
17 fprg XUYVZWZWXYXZYZ:XYZZ
18 10 17 syl XUYVZWXYXZYZ:XYZZ
19 1 eqcomi XZYZ=F
20 19 feq1i XZYZ:XYZZF:XYZZ
21 18 20 sylib XUYVZWXYF:XYZZ
22 df-f1 F:XY1-1ZZF:XYZZFunF-1
23 dff13 F:XY1-1ZZF:XYZZxXYyXYFx=Fyx=y
24 fveqeq2 x=XFx=FyFX=Fy
25 eqeq1 x=Xx=yX=y
26 24 25 imbi12d x=XFx=Fyx=yFX=FyX=y
27 26 ralbidv x=XyXYFx=Fyx=yyXYFX=FyX=y
28 fveqeq2 x=YFx=FyFY=Fy
29 eqeq1 x=Yx=yY=y
30 28 29 imbi12d x=YFx=Fyx=yFY=FyY=y
31 30 ralbidv x=YyXYFx=Fyx=yyXYFY=FyY=y
32 27 31 ralprg XUYVxXYyXYFx=Fyx=yyXYFX=FyX=yyXYFY=FyY=y
33 32 3adant3 XUYVZWxXYyXYFx=Fyx=yyXYFX=FyX=yyXYFY=FyY=y
34 33 adantr XUYVZWXYxXYyXYFx=Fyx=yyXYFX=FyX=yyXYFY=FyY=y
35 fveq2 y=XFy=FX
36 35 eqeq2d y=XFX=FyFX=FX
37 eqeq2 y=XX=yX=X
38 36 37 imbi12d y=XFX=FyX=yFX=FXX=X
39 fveq2 y=YFy=FY
40 39 eqeq2d y=YFX=FyFX=FY
41 eqeq2 y=YX=yX=Y
42 40 41 imbi12d y=YFX=FyX=yFX=FYX=Y
43 38 42 ralprg XUYVyXYFX=FyX=yFX=FXX=XFX=FYX=Y
44 35 eqeq2d y=XFY=FyFY=FX
45 eqeq2 y=XY=yY=X
46 44 45 imbi12d y=XFY=FyY=yFY=FXY=X
47 39 eqeq2d y=YFY=FyFY=FY
48 eqeq2 y=YY=yY=Y
49 47 48 imbi12d y=YFY=FyY=yFY=FYY=Y
50 46 49 ralprg XUYVyXYFY=FyY=yFY=FXY=XFY=FYY=Y
51 43 50 anbi12d XUYVyXYFX=FyX=yyXYFY=FyY=yFX=FXX=XFX=FYX=YFY=FXY=XFY=FYY=Y
52 51 3adant3 XUYVZWyXYFX=FyX=yyXYFY=FyY=yFX=FXX=XFX=FYX=YFY=FXY=XFY=FYY=Y
53 52 adantr XUYVZWXYyXYFX=FyX=yyXYFY=FyY=yFX=FXX=XFX=FYX=YFY=FXY=XFY=FYY=Y
54 1 fveq1i FX=XZYZX
55 3simpb XUYVZWXUZW
56 55 anim1i XUYVZWXYXUZWXY
57 df-3an XUZWXYXUZWXY
58 56 57 sylibr XUYVZWXYXUZWXY
59 fvpr1g XUZWXYXZYZX=Z
60 58 59 syl XUYVZWXYXZYZX=Z
61 54 60 eqtrid XUYVZWXYFX=Z
62 1 fveq1i FY=XZYZY
63 3simpc XUYVZWYVZW
64 63 anim1i XUYVZWXYYVZWXY
65 df-3an YVZWXYYVZWXY
66 64 65 sylibr XUYVZWXYYVZWXY
67 fvpr2g YVZWXYXZYZY=Z
68 66 67 syl XUYVZWXYXZYZY=Z
69 62 68 eqtr2id XUYVZWXYZ=FY
70 61 69 eqtrd XUYVZWXYFX=FY
71 idd XUYVZWXYX=YX=Y
72 70 71 embantd XUYVZWXYFX=FYX=YX=Y
73 72 adantld XUYVZWXYFX=FXX=XFX=FYX=YX=Y
74 73 adantrd XUYVZWXYFX=FXX=XFX=FYX=YFY=FXY=XFY=FYY=YX=Y
75 53 74 sylbid XUYVZWXYyXYFX=FyX=yyXYFY=FyY=yX=Y
76 34 75 sylbid XUYVZWXYxXYyXYFx=Fyx=yX=Y
77 76 adantld XUYVZWXYF:XYZZxXYyXYFx=Fyx=yX=Y
78 23 77 biimtrid XUYVZWXYF:XY1-1ZZX=Y
79 22 78 biimtrrid XUYVZWXYF:XYZZFunF-1X=Y
80 21 79 mpand XUYVZWXYFunF-1X=Y
81 16 80 mtod XUYVZWXY¬FunF-1
82 14 81 jca XUYVZWXYFunF¬FunF-1