Metamath Proof Explorer


Theorem ntrss3

Description: The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion ntrss3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 ntropn ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 )
3 1 eltopss ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
4 2 3 syldan ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )