Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
3 |
1
|
ntrss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
4 |
2 3
|
mp3an3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
6 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
7 |
1
|
ntrss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
8 |
6 7
|
mp3an3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) |
10 |
5 9
|
ssind |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
11 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
12 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ 𝑋 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) |
14 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
16 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) |
18 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ∧ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ∈ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ) |
19 |
11 15 17 18
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ) |
20 |
|
inss1 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) |
21 |
1
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
23 |
20 22
|
sstrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝐴 ) |
24 |
|
inss2 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) |
25 |
1
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝐵 ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝐵 ) |
27 |
24 26
|
sstrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝐵 ) |
28 |
23 27
|
ssind |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
29 |
1
|
ssntr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝑋 ) ∧ ( ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ∈ 𝐽 ∧ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
30 |
11 13 19 28 29
|
syl22anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
31 |
10 30
|
eqssd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝐵 ) ) ) |