| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 3 |
1
|
ntrss |
|- ( ( J e. Top /\ A C_ X /\ ( A i^i B ) C_ A ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 4 |
2 3
|
mp3an3 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 5 |
4
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
| 6 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 7 |
1
|
ntrss |
|- ( ( J e. Top /\ B C_ X /\ ( A i^i B ) C_ B ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 8 |
6 7
|
mp3an3 |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 9 |
8
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
| 10 |
5 9
|
ssind |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |
| 11 |
|
simp1 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> J e. Top ) |
| 12 |
|
ssinss1 |
|- ( A C_ X -> ( A i^i B ) C_ X ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( A i^i B ) C_ X ) |
| 14 |
1
|
ntropn |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
| 15 |
14
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
| 16 |
1
|
ntropn |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
| 17 |
16
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
| 18 |
|
inopn |
|- ( ( J e. Top /\ ( ( int ` J ) ` A ) e. J /\ ( ( int ` J ) ` B ) e. J ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
| 19 |
11 15 17 18
|
syl3anc |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
| 20 |
|
inss1 |
|- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` A ) |
| 21 |
1
|
ntrss2 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
| 22 |
21
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
| 23 |
20 22
|
sstrid |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ A ) |
| 24 |
|
inss2 |
|- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` B ) |
| 25 |
1
|
ntrss2 |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
| 26 |
25
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
| 27 |
24 26
|
sstrid |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ B ) |
| 28 |
23 27
|
ssind |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) |
| 29 |
1
|
ssntr |
|- ( ( ( J e. Top /\ ( A i^i B ) C_ X ) /\ ( ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J /\ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
| 30 |
11 13 19 28 29
|
syl22anc |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
| 31 |
10 30
|
eqssd |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) = ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |