Metamath Proof Explorer


Theorem ssntr

Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion ssntr ( ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) ∧ ( 𝑂𝐽𝑂𝑆 ) ) → 𝑂 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 elin ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ( 𝑂𝐽𝑂 ∈ 𝒫 𝑆 ) )
3 elpwg ( 𝑂𝐽 → ( 𝑂 ∈ 𝒫 𝑆𝑂𝑆 ) )
4 3 pm5.32i ( ( 𝑂𝐽𝑂 ∈ 𝒫 𝑆 ) ↔ ( 𝑂𝐽𝑂𝑆 ) )
5 2 4 bitr2i ( ( 𝑂𝐽𝑂𝑆 ) ↔ 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) )
6 elssuni ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) → 𝑂 ( 𝐽 ∩ 𝒫 𝑆 ) )
7 5 6 sylbi ( ( 𝑂𝐽𝑂𝑆 ) → 𝑂 ( 𝐽 ∩ 𝒫 𝑆 ) )
8 7 adantl ( ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) ∧ ( 𝑂𝐽𝑂𝑆 ) ) → 𝑂 ( 𝐽 ∩ 𝒫 𝑆 ) )
9 1 ntrval ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝐽 ∩ 𝒫 𝑆 ) )
10 9 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) ∧ ( 𝑂𝐽𝑂𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝐽 ∩ 𝒫 𝑆 ) )
11 8 10 sseqtrrd ( ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) ∧ ( 𝑂𝐽𝑂𝑆 ) ) → 𝑂 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )