Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
ntrfval |
⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) |
6 |
|
pweq |
⊢ ( 𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆 ) |
7 |
6
|
ineq2d |
⊢ ( 𝑥 = 𝑆 → ( 𝐽 ∩ 𝒫 𝑥 ) = ( 𝐽 ∩ 𝒫 𝑆 ) ) |
8 |
7
|
unieqd |
⊢ ( 𝑥 = 𝑆 → ∪ ( 𝐽 ∩ 𝒫 𝑥 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
9 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
10 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
13 |
|
inex1g |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) |
15 |
14
|
uniexd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) |
16 |
5 8 12 15
|
fvmptd3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
17 |
4 16
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |