Metamath Proof Explorer


Theorem clsval

Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis iscld.1 𝑋 = 𝐽
Assertion clsval ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )

Proof

Step Hyp Ref Expression
1 iscld.1 𝑋 = 𝐽
2 1 clsfval ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } ) )
3 2 fveq1d ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } ) ‘ 𝑆 ) )
4 3 adantr ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } ) ‘ 𝑆 ) )
5 eqid ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } ) = ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } )
6 sseq1 ( 𝑦 = 𝑆 → ( 𝑦𝑥𝑆𝑥 ) )
7 6 rabbidv ( 𝑦 = 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
8 7 inteqd ( 𝑦 = 𝑆 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
9 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
10 elpw2g ( 𝑋𝐽 → ( 𝑆 ∈ 𝒫 𝑋𝑆𝑋 ) )
11 9 10 syl ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋𝑆𝑋 ) )
12 11 biimpar ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑆 ∈ 𝒫 𝑋 )
13 1 topcld ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )
14 sseq2 ( 𝑥 = 𝑋 → ( 𝑆𝑥𝑆𝑋 ) )
15 14 rspcev ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆𝑥 )
16 13 15 sylan ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆𝑥 )
17 intexrab ( ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆𝑥 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } ∈ V )
18 16 17 sylib ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } ∈ V )
19 5 8 12 18 fvmptd3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦𝑥 } ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
20 4 19 eqtrd ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )