| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
sscon |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) |
| 4 |
|
difss |
⊢ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 |
| 5 |
3 4
|
jctil |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) |
| 6 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 7 |
6
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 8 |
5 7
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 9 |
8
|
sscond |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 10 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) |
| 11 |
10
|
impcom |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 12 |
1
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
| 13 |
11 12
|
sylan2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
| 14 |
1
|
ntrval2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 16 |
9 13 15
|
3sstr4d |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 17 |
16
|
3impb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |