Metamath Proof Explorer
Description: Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
|
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
|
Assertion |
num0u |
⊢ ( 𝑇 · 𝐴 ) = ( ( 𝑇 · 𝐴 ) + 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
| 2 |
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
| 3 |
1 2
|
nn0mulcli |
⊢ ( 𝑇 · 𝐴 ) ∈ ℕ0 |
| 4 |
3
|
nn0cni |
⊢ ( 𝑇 · 𝐴 ) ∈ ℂ |
| 5 |
4
|
addridi |
⊢ ( ( 𝑇 · 𝐴 ) + 0 ) = ( 𝑇 · 𝐴 ) |
| 6 |
5
|
eqcomi |
⊢ ( 𝑇 · 𝐴 ) = ( ( 𝑇 · 𝐴 ) + 0 ) |