| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | extwwlkfab.c | ⊢ 𝐶  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) | 
						
							| 3 |  | extwwlkfab.f | ⊢ 𝐹  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) | 
						
							| 4 |  | numclwwlk.t | ⊢ 𝑇  =  ( 𝑢  ∈  ( 𝑋 𝐶 𝑁 )  ↦  〈 ( 𝑢  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑢 ‘ ( 𝑁  −  1 ) ) 〉 ) | 
						
							| 5 | 1 2 3 4 | numclwwlk1lem2f1 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 6 | 1 2 3 4 | numclwwlk1lem2fo | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑇 : ( 𝑋 𝐶 𝑁 ) –onto→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 7 |  | df-f1o | ⊢ ( 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1-onto→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) )  ↔  ( 𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) )  ∧  𝑇 : ( 𝑋 𝐶 𝑁 ) –onto→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) ) | 
						
							| 8 | 5 6 7 | sylanbrc | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑇 : ( 𝑋 𝐶 𝑁 ) –1-1-onto→ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) |