| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | numclwwlk.t |  |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 5 | 1 2 3 4 | numclwwlk1lem2f1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 6 | 1 2 3 4 | numclwwlk1lem2fo |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 7 |  | df-f1o |  |-  ( T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) <-> ( T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) /\ T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) ) | 
						
							| 8 | 5 6 7 | sylanbrc |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) ) |