| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | numclwwlk.t |  |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 5 | 1 2 3 4 | numclwwlk1lem2f |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 6 | 1 2 3 4 | numclwwlk1lem2fv |  |-  ( p e. ( X C N ) -> ( T ` p ) = <. ( p prefix ( N - 2 ) ) , ( p ` ( N - 1 ) ) >. ) | 
						
							| 7 | 6 | ad2antrl |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( T ` p ) = <. ( p prefix ( N - 2 ) ) , ( p ` ( N - 1 ) ) >. ) | 
						
							| 8 | 1 2 3 4 | numclwwlk1lem2fv |  |-  ( a e. ( X C N ) -> ( T ` a ) = <. ( a prefix ( N - 2 ) ) , ( a ` ( N - 1 ) ) >. ) | 
						
							| 9 | 8 | ad2antll |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( T ` a ) = <. ( a prefix ( N - 2 ) ) , ( a ` ( N - 1 ) ) >. ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( ( T ` p ) = ( T ` a ) <-> <. ( p prefix ( N - 2 ) ) , ( p ` ( N - 1 ) ) >. = <. ( a prefix ( N - 2 ) ) , ( a ` ( N - 1 ) ) >. ) ) | 
						
							| 11 |  | ovex |  |-  ( p prefix ( N - 2 ) ) e. _V | 
						
							| 12 |  | fvex |  |-  ( p ` ( N - 1 ) ) e. _V | 
						
							| 13 | 11 12 | opth |  |-  ( <. ( p prefix ( N - 2 ) ) , ( p ` ( N - 1 ) ) >. = <. ( a prefix ( N - 2 ) ) , ( a ` ( N - 1 ) ) >. <-> ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) | 
						
							| 14 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 15 | 2 | 2clwwlkel |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( p e. ( X C N ) <-> ( p e. ( X ( ClWWalksNOn ` G ) N ) /\ ( p ` ( N - 2 ) ) = X ) ) ) | 
						
							| 16 |  | isclwwlknon |  |-  ( p e. ( X ( ClWWalksNOn ` G ) N ) <-> ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) ) | 
						
							| 17 | 16 | anbi1i |  |-  ( ( p e. ( X ( ClWWalksNOn ` G ) N ) /\ ( p ` ( N - 2 ) ) = X ) <-> ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) ) | 
						
							| 18 | 15 17 | bitrdi |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( p e. ( X C N ) <-> ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) ) ) | 
						
							| 19 | 2 | 2clwwlkel |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( a e. ( X C N ) <-> ( a e. ( X ( ClWWalksNOn ` G ) N ) /\ ( a ` ( N - 2 ) ) = X ) ) ) | 
						
							| 20 |  | isclwwlknon |  |-  ( a e. ( X ( ClWWalksNOn ` G ) N ) <-> ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( a e. ( X ( ClWWalksNOn ` G ) N ) /\ ( a ` ( N - 2 ) ) = X ) <-> ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) | 
						
							| 22 | 19 21 | bitrdi |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( a e. ( X C N ) <-> ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) ) | 
						
							| 23 | 18 22 | anbi12d |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( p e. ( X C N ) /\ a e. ( X C N ) ) <-> ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 24 | 14 23 | sylan2 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( p e. ( X C N ) /\ a e. ( X C N ) ) <-> ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 25 | 24 | 3adant1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( p e. ( X C N ) /\ a e. ( X C N ) ) <-> ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 26 | 1 | clwwlknbp |  |-  ( p e. ( N ClWWalksN G ) -> ( p e. Word V /\ ( # ` p ) = N ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) -> ( p e. Word V /\ ( # ` p ) = N ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p e. Word V /\ ( # ` p ) = N ) ) | 
						
							| 29 |  | simpr |  |-  ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) -> ( p ` 0 ) = X ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p ` 0 ) = X ) | 
						
							| 31 |  | simpr |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p ` ( N - 2 ) ) = X ) | 
						
							| 32 | 29 | eqcomd |  |-  ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) -> X = ( p ` 0 ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> X = ( p ` 0 ) ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p ` ( N - 2 ) ) = ( p ` 0 ) ) | 
						
							| 35 | 28 30 34 | jca32 |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( ( p e. Word V /\ ( # ` p ) = N ) /\ ( ( p ` 0 ) = X /\ ( p ` ( N - 2 ) ) = ( p ` 0 ) ) ) ) | 
						
							| 36 | 1 | clwwlknbp |  |-  ( a e. ( N ClWWalksN G ) -> ( a e. Word V /\ ( # ` a ) = N ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) -> ( a e. Word V /\ ( # ` a ) = N ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> ( a e. Word V /\ ( # ` a ) = N ) ) | 
						
							| 39 |  | simpr |  |-  ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) -> ( a ` 0 ) = X ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> ( a ` 0 ) = X ) | 
						
							| 41 |  | simpr |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> ( a ` ( N - 2 ) ) = X ) | 
						
							| 42 | 39 | eqcomd |  |-  ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) -> X = ( a ` 0 ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> X = ( a ` 0 ) ) | 
						
							| 44 | 41 43 | eqtrd |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> ( a ` ( N - 2 ) ) = ( a ` 0 ) ) | 
						
							| 45 | 38 40 44 | jca32 |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> ( ( a e. Word V /\ ( # ` a ) = N ) /\ ( ( a ` 0 ) = X /\ ( a ` ( N - 2 ) ) = ( a ` 0 ) ) ) ) | 
						
							| 46 |  | eqtr3 |  |-  ( ( ( # ` p ) = N /\ ( # ` a ) = N ) -> ( # ` p ) = ( # ` a ) ) | 
						
							| 47 | 46 | expcom |  |-  ( ( # ` a ) = N -> ( ( # ` p ) = N -> ( # ` p ) = ( # ` a ) ) ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( a e. Word V /\ ( # ` a ) = N ) /\ ( ( a ` 0 ) = X /\ ( a ` ( N - 2 ) ) = ( a ` 0 ) ) ) -> ( ( # ` p ) = N -> ( # ` p ) = ( # ` a ) ) ) | 
						
							| 49 | 48 | com12 |  |-  ( ( # ` p ) = N -> ( ( ( a e. Word V /\ ( # ` a ) = N ) /\ ( ( a ` 0 ) = X /\ ( a ` ( N - 2 ) ) = ( a ` 0 ) ) ) -> ( # ` p ) = ( # ` a ) ) ) | 
						
							| 50 | 49 | ad2antlr |  |-  ( ( ( p e. Word V /\ ( # ` p ) = N ) /\ ( ( p ` 0 ) = X /\ ( p ` ( N - 2 ) ) = ( p ` 0 ) ) ) -> ( ( ( a e. Word V /\ ( # ` a ) = N ) /\ ( ( a ` 0 ) = X /\ ( a ` ( N - 2 ) ) = ( a ` 0 ) ) ) -> ( # ` p ) = ( # ` a ) ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ( ( p e. Word V /\ ( # ` p ) = N ) /\ ( ( p ` 0 ) = X /\ ( p ` ( N - 2 ) ) = ( p ` 0 ) ) ) /\ ( ( a e. Word V /\ ( # ` a ) = N ) /\ ( ( a ` 0 ) = X /\ ( a ` ( N - 2 ) ) = ( a ` 0 ) ) ) ) -> ( # ` p ) = ( # ` a ) ) | 
						
							| 52 | 35 45 51 | syl2an |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( # ` p ) = ( # ` a ) ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( # ` p ) = ( # ` a ) ) | 
						
							| 54 | 27 | simprd |  |-  ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) -> ( # ` p ) = N ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( # ` p ) = N ) | 
						
							| 56 | 55 | eqcomd |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> N = ( # ` p ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> N = ( # ` p ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( N - 2 ) = ( ( # ` p ) - 2 ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p prefix ( N - 2 ) ) = ( p prefix ( ( # ` p ) - 2 ) ) ) | 
						
							| 60 | 58 | oveq2d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( a prefix ( N - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) ) | 
						
							| 61 | 59 60 | eqeq12d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) <-> ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) ) ) | 
						
							| 62 | 61 | biimpcd |  |-  ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) -> ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) ) ) | 
						
							| 64 | 63 | impcom |  |-  ( ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) ) | 
						
							| 65 | 55 | oveq1d |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( ( # ` p ) - 2 ) = ( N - 2 ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p ` ( ( # ` p ) - 2 ) ) = ( p ` ( N - 2 ) ) ) | 
						
							| 67 | 66 31 | eqtrd |  |-  ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) -> ( p ` ( ( # ` p ) - 2 ) ) = X ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p ` ( ( # ` p ) - 2 ) ) = X ) | 
						
							| 69 | 41 | eqcomd |  |-  ( ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) -> X = ( a ` ( N - 2 ) ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> X = ( a ` ( N - 2 ) ) ) | 
						
							| 71 | 58 | fveq2d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( a ` ( N - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) ) | 
						
							| 72 | 70 71 | eqtrd |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> X = ( a ` ( ( # ` p ) - 2 ) ) ) | 
						
							| 73 | 68 72 | eqtrd |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) ) | 
						
							| 75 |  | lsw |  |-  ( p e. Word V -> ( lastS ` p ) = ( p ` ( ( # ` p ) - 1 ) ) ) | 
						
							| 76 |  | fvoveq1 |  |-  ( ( # ` p ) = N -> ( p ` ( ( # ` p ) - 1 ) ) = ( p ` ( N - 1 ) ) ) | 
						
							| 77 | 75 76 | sylan9eq |  |-  ( ( p e. Word V /\ ( # ` p ) = N ) -> ( lastS ` p ) = ( p ` ( N - 1 ) ) ) | 
						
							| 78 | 26 77 | syl |  |-  ( p e. ( N ClWWalksN G ) -> ( lastS ` p ) = ( p ` ( N - 1 ) ) ) | 
						
							| 79 | 78 | eqcomd |  |-  ( p e. ( N ClWWalksN G ) -> ( p ` ( N - 1 ) ) = ( lastS ` p ) ) | 
						
							| 80 | 79 | ad3antrrr |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( p ` ( N - 1 ) ) = ( lastS ` p ) ) | 
						
							| 81 |  | lsw |  |-  ( a e. Word V -> ( lastS ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( a e. Word V /\ ( # ` a ) = N ) -> ( lastS ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) | 
						
							| 83 |  | oveq1 |  |-  ( N = ( # ` a ) -> ( N - 1 ) = ( ( # ` a ) - 1 ) ) | 
						
							| 84 | 83 | eqcoms |  |-  ( ( # ` a ) = N -> ( N - 1 ) = ( ( # ` a ) - 1 ) ) | 
						
							| 85 | 84 | fveq2d |  |-  ( ( # ` a ) = N -> ( a ` ( N - 1 ) ) = ( a ` ( ( # ` a ) - 1 ) ) ) | 
						
							| 86 | 85 | eqeq2d |  |-  ( ( # ` a ) = N -> ( ( lastS ` a ) = ( a ` ( N - 1 ) ) <-> ( lastS ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( a e. Word V /\ ( # ` a ) = N ) -> ( ( lastS ` a ) = ( a ` ( N - 1 ) ) <-> ( lastS ` a ) = ( a ` ( ( # ` a ) - 1 ) ) ) ) | 
						
							| 88 | 82 87 | mpbird |  |-  ( ( a e. Word V /\ ( # ` a ) = N ) -> ( lastS ` a ) = ( a ` ( N - 1 ) ) ) | 
						
							| 89 | 36 88 | syl |  |-  ( a e. ( N ClWWalksN G ) -> ( lastS ` a ) = ( a ` ( N - 1 ) ) ) | 
						
							| 90 | 89 | eqcomd |  |-  ( a e. ( N ClWWalksN G ) -> ( a ` ( N - 1 ) ) = ( lastS ` a ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) -> ( a ` ( N - 1 ) ) = ( lastS ` a ) ) | 
						
							| 92 | 91 | ad2antrl |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( a ` ( N - 1 ) ) = ( lastS ` a ) ) | 
						
							| 93 | 80 92 | eqeq12d |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) <-> ( lastS ` p ) = ( lastS ` a ) ) ) | 
						
							| 94 | 93 | biimpd |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) -> ( lastS ` p ) = ( lastS ` a ) ) ) | 
						
							| 95 | 94 | adantld |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> ( lastS ` p ) = ( lastS ` a ) ) ) | 
						
							| 96 | 95 | imp |  |-  ( ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( lastS ` p ) = ( lastS ` a ) ) | 
						
							| 97 | 64 74 96 | 3jca |  |-  ( ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) /\ ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) /\ ( lastS ` p ) = ( lastS ` a ) ) ) | 
						
							| 98 | 97 | 3adant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) /\ ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) /\ ( lastS ` p ) = ( lastS ` a ) ) ) | 
						
							| 99 | 1 | clwwlknwrd |  |-  ( p e. ( N ClWWalksN G ) -> p e. Word V ) | 
						
							| 100 | 99 | ad3antrrr |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> p e. Word V ) | 
						
							| 101 | 100 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> p e. Word V ) | 
						
							| 102 | 1 | clwwlknwrd |  |-  ( a e. ( N ClWWalksN G ) -> a e. Word V ) | 
						
							| 103 | 102 | adantr |  |-  ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) -> a e. Word V ) | 
						
							| 104 | 103 | ad2antrl |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> a e. Word V ) | 
						
							| 105 | 104 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> a e. Word V ) | 
						
							| 106 |  | clwwlknlen |  |-  ( p e. ( N ClWWalksN G ) -> ( # ` p ) = N ) | 
						
							| 107 |  | eluz2b1 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) | 
						
							| 108 |  | breq2 |  |-  ( N = ( # ` p ) -> ( 1 < N <-> 1 < ( # ` p ) ) ) | 
						
							| 109 | 108 | eqcoms |  |-  ( ( # ` p ) = N -> ( 1 < N <-> 1 < ( # ` p ) ) ) | 
						
							| 110 | 109 | biimpcd |  |-  ( 1 < N -> ( ( # ` p ) = N -> 1 < ( # ` p ) ) ) | 
						
							| 111 | 107 110 | simplbiim |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( # ` p ) = N -> 1 < ( # ` p ) ) ) | 
						
							| 112 | 14 106 111 | syl2imc |  |-  ( p e. ( N ClWWalksN G ) -> ( N e. ( ZZ>= ` 3 ) -> 1 < ( # ` p ) ) ) | 
						
							| 113 | 112 | ad3antrrr |  |-  ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( N e. ( ZZ>= ` 3 ) -> 1 < ( # ` p ) ) ) | 
						
							| 114 | 113 | impcom |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) ) -> 1 < ( # ` p ) ) | 
						
							| 115 | 114 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> 1 < ( # ` p ) ) | 
						
							| 116 |  | 2swrd2eqwrdeq |  |-  ( ( p e. Word V /\ a e. Word V /\ 1 < ( # ` p ) ) -> ( p = a <-> ( ( # ` p ) = ( # ` a ) /\ ( ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) /\ ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) /\ ( lastS ` p ) = ( lastS ` a ) ) ) ) ) | 
						
							| 117 | 101 105 115 116 | syl3anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> ( p = a <-> ( ( # ` p ) = ( # ` a ) /\ ( ( p prefix ( ( # ` p ) - 2 ) ) = ( a prefix ( ( # ` p ) - 2 ) ) /\ ( p ` ( ( # ` p ) - 2 ) ) = ( a ` ( ( # ` p ) - 2 ) ) /\ ( lastS ` p ) = ( lastS ` a ) ) ) ) ) | 
						
							| 118 | 53 98 117 | mpbir2and |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) /\ ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) ) -> p = a ) | 
						
							| 119 | 118 | 3exp |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> p = a ) ) ) | 
						
							| 120 | 119 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( p e. ( N ClWWalksN G ) /\ ( p ` 0 ) = X ) /\ ( p ` ( N - 2 ) ) = X ) /\ ( ( a e. ( N ClWWalksN G ) /\ ( a ` 0 ) = X ) /\ ( a ` ( N - 2 ) ) = X ) ) -> ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> p = a ) ) ) | 
						
							| 121 | 25 120 | sylbid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( p e. ( X C N ) /\ a e. ( X C N ) ) -> ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> p = a ) ) ) | 
						
							| 122 | 121 | imp |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( ( ( p prefix ( N - 2 ) ) = ( a prefix ( N - 2 ) ) /\ ( p ` ( N - 1 ) ) = ( a ` ( N - 1 ) ) ) -> p = a ) ) | 
						
							| 123 | 13 122 | biimtrid |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( <. ( p prefix ( N - 2 ) ) , ( p ` ( N - 1 ) ) >. = <. ( a prefix ( N - 2 ) ) , ( a ` ( N - 1 ) ) >. -> p = a ) ) | 
						
							| 124 | 10 123 | sylbid |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( p e. ( X C N ) /\ a e. ( X C N ) ) ) -> ( ( T ` p ) = ( T ` a ) -> p = a ) ) | 
						
							| 125 | 124 | ralrimivva |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> A. p e. ( X C N ) A. a e. ( X C N ) ( ( T ` p ) = ( T ` a ) -> p = a ) ) | 
						
							| 126 |  | dff13 |  |-  ( T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) <-> ( T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) /\ A. p e. ( X C N ) A. a e. ( X C N ) ( ( T ` p ) = ( T ` a ) -> p = a ) ) ) | 
						
							| 127 | 5 125 126 | sylanbrc |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) ) |