| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2clwwlk.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 2 | 1 | 2clwwlk |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 3 | 2 | eleq2d |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> W e. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 4 |  | fveq1 |  |-  ( w = W -> ( w ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( w = W -> ( ( w ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = X ) ) | 
						
							| 6 | 5 | elrab |  |-  ( W e. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) | 
						
							| 7 | 3 6 | bitrdi |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) |