Metamath Proof Explorer


Theorem 2clwwlk

Description: Value of operation C , mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in Huneke p. 2. Such closed walks are "double loops" consisting of a closed (n-2)-walk v = v(0) ... v(n-2) = v and a closed 2-walk v = v(n-2) v(n-1) v(n) = v, see 2clwwlk2clwwlk . ( X C N ) is called the "set of double loops of length N on vertex X " in the following. (Contributed by Alexander van der Vekens, 14-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 20-Apr-2022)

Ref Expression
Hypothesis 2clwwlk.c
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
Assertion 2clwwlk
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )

Proof

Step Hyp Ref Expression
1 2clwwlk.c
 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
2 oveq12
 |-  ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) )
3 fvoveq1
 |-  ( n = N -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) )
4 3 adantl
 |-  ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) )
5 simpl
 |-  ( ( v = X /\ n = N ) -> v = X )
6 4 5 eqeq12d
 |-  ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) = v <-> ( w ` ( N - 2 ) ) = X ) )
7 2 6 rabeqbidv
 |-  ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )
8 ovex
 |-  ( X ( ClWWalksNOn ` G ) N ) e. _V
9 8 rabex
 |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. _V
10 7 1 9 ovmpoa
 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )