| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2clwwlk.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 2 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 3 | 1 | 2clwwlkel |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 5 |  | simpr |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 6 | 5 | anim1i |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 7 |  | 3anass |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) <-> ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 8 | 6 7 | sylibr |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) | 
						
							| 9 |  | clwwnonrepclwwnon |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 11 | 5 | adantr |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 12 |  | simprl |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> W e. ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 13 |  | simprr |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W ` ( N - 2 ) ) = X ) | 
						
							| 14 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 15 |  | simpr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> X = ( W ` 0 ) ) | 
						
							| 17 | 14 16 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X = ( W ` 0 ) ) | 
						
							| 18 | 17 | ad2antrl |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> X = ( W ` 0 ) ) | 
						
							| 19 | 13 18 | eqtrd |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) | 
						
							| 20 |  | 2clwwlk2clwwlklem |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 21 | 11 12 19 20 | syl3anc |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 22 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 23 | 22 | clwwlknbp |  |-  ( W e. ( N ClWWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) ) | 
						
							| 24 |  | opeq2 |  |-  ( N = ( # ` W ) -> <. ( N - 2 ) , N >. = <. ( N - 2 ) , ( # ` W ) >. ) | 
						
							| 25 | 24 | oveq2d |  |-  ( N = ( # ` W ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( N = ( # ` W ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) ) | 
						
							| 27 | 26 | eqcoms |  |-  ( ( # ` W ) = N -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) ) | 
						
							| 29 |  | simpl |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 30 |  | fz1ssfz0 |  |-  ( 1 ... N ) C_ ( 0 ... N ) | 
						
							| 31 |  | ige3m2fz |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. ( 1 ... N ) ) | 
						
							| 32 | 30 31 | sselid |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. ( 0 ... N ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. ( 0 ... N ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. ( 0 ... N ) ) | 
						
							| 35 |  | oveq2 |  |-  ( ( # ` W ) = N -> ( 0 ... ( # ` W ) ) = ( 0 ... N ) ) | 
						
							| 36 | 35 | eleq2d |  |-  ( ( # ` W ) = N -> ( ( N - 2 ) e. ( 0 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 0 ... N ) ) ) | 
						
							| 37 | 36 | ad2antlr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( N - 2 ) e. ( 0 ... ( # ` W ) ) <-> ( N - 2 ) e. ( 0 ... N ) ) ) | 
						
							| 38 | 34 37 | mpbird |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 39 |  | pfxcctswrd |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( N - 2 ) e. ( 0 ... ( # ` W ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) = W ) | 
						
							| 40 | 29 38 39 | syl2an2r |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , ( # ` W ) >. ) ) = W ) | 
						
							| 41 | 28 40 | eqtrd |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) | 
						
							| 42 | 23 41 | sylan |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) | 
						
							| 43 | 42 | ex |  |-  ( W e. ( N ClWWalksN G ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) ) | 
						
							| 45 | 14 44 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) ) | 
						
							| 47 | 46 | impcom |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) = W ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) | 
						
							| 49 | 10 21 48 | 3jca |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) ) | 
						
							| 50 | 49 | ex |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) ) ) | 
						
							| 51 | 4 50 | sylbid |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) -> ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) ) ) | 
						
							| 52 |  | rspceov |  |-  ( ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) /\ W = ( ( W prefix ( N - 2 ) ) ++ ( W substr <. ( N - 2 ) , N >. ) ) ) -> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) ) | 
						
							| 53 | 51 52 | syl6 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) -> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) ) ) | 
						
							| 54 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC ) | 
						
							| 55 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) | 
						
							| 56 | 54 55 | npcand |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) + 2 ) = N ) | 
						
							| 57 | 56 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 2 ) + 2 ) = N ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) = ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 59 | 58 | eleq2d |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) <-> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 60 | 59 | biimpd |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 61 |  | clwwlknonccat |  |-  ( ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) ( ( N - 2 ) + 2 ) ) ) | 
						
							| 62 | 60 61 | impel |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 63 |  | isclwwlknon |  |-  ( b e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( b e. ( 2 ClWWalksN G ) /\ ( b ` 0 ) = X ) ) | 
						
							| 64 |  | clwwlkn2 |  |-  ( b e. ( 2 ClWWalksN G ) <-> ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) /\ { ( b ` 0 ) , ( b ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 65 |  | isclwwlknon |  |-  ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( a e. ( ( N - 2 ) ClWWalksN G ) /\ ( a ` 0 ) = X ) ) | 
						
							| 66 | 22 | clwwlknbp |  |-  ( a e. ( ( N - 2 ) ClWWalksN G ) -> ( a e. Word ( Vtx ` G ) /\ ( # ` a ) = ( N - 2 ) ) ) | 
						
							| 67 |  | simpl |  |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> a e. Word ( Vtx ` G ) ) | 
						
							| 68 |  | simprr |  |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> b e. Word ( Vtx ` G ) ) | 
						
							| 69 |  | 2nn |  |-  2 e. NN | 
						
							| 70 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) | 
						
							| 71 | 69 70 | mpbir |  |-  0 e. ( 0 ..^ 2 ) | 
						
							| 72 |  | oveq2 |  |-  ( ( # ` b ) = 2 -> ( 0 ..^ ( # ` b ) ) = ( 0 ..^ 2 ) ) | 
						
							| 73 | 71 72 | eleqtrrid |  |-  ( ( # ` b ) = 2 -> 0 e. ( 0 ..^ ( # ` b ) ) ) | 
						
							| 74 | 73 | ad2antrl |  |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> 0 e. ( 0 ..^ ( # ` b ) ) ) | 
						
							| 75 | 67 68 74 | 3jca |  |-  ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) ) | 
						
							| 78 |  | ccatval3 |  |-  ( ( a e. Word ( Vtx ` G ) /\ b e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` b ) ) ) -> ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) = ( b ` 0 ) ) | 
						
							| 79 | 77 78 | syl |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) = ( b ` 0 ) ) | 
						
							| 80 |  | simpr |  |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( # ` a ) = ( N - 2 ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( 0 + ( # ` a ) ) = ( 0 + ( N - 2 ) ) ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) -> ( 0 + ( # ` a ) ) = ( 0 + ( N - 2 ) ) ) | 
						
							| 83 | 54 55 | subcld |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. CC ) | 
						
							| 84 | 83 | addlidd |  |-  ( N e. ( ZZ>= ` 3 ) -> ( 0 + ( N - 2 ) ) = ( N - 2 ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( 0 + ( N - 2 ) ) = ( N - 2 ) ) | 
						
							| 86 | 82 85 | sylan9eq |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( 0 + ( # ` a ) ) = ( N - 2 ) ) | 
						
							| 87 | 86 | eqcomd |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) = ( 0 + ( # ` a ) ) ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = ( ( a ++ b ) ` ( 0 + ( # ` a ) ) ) ) | 
						
							| 89 |  | simpl |  |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> ( b ` 0 ) = X ) | 
						
							| 90 | 89 | eqcomd |  |-  ( ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) -> X = ( b ` 0 ) ) | 
						
							| 91 | 90 | ad2antlr |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X = ( b ` 0 ) ) | 
						
							| 92 | 79 88 91 | 3eqtr4d |  |-  ( ( ( ( a e. Word ( Vtx ` G ) /\ ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) ) /\ ( ( b ` 0 ) = X /\ ( # ` a ) = ( N - 2 ) ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) | 
						
							| 93 | 92 | exp53 |  |-  ( a e. Word ( Vtx ` G ) -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( b ` 0 ) = X -> ( ( # ` a ) = ( N - 2 ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) ) | 
						
							| 94 | 93 | com24 |  |-  ( a e. Word ( Vtx ` G ) -> ( ( # ` a ) = ( N - 2 ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) ) | 
						
							| 95 | 94 | imp |  |-  ( ( a e. Word ( Vtx ` G ) /\ ( # ` a ) = ( N - 2 ) ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 96 | 66 95 | syl |  |-  ( a e. ( ( N - 2 ) ClWWalksN G ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( a e. ( ( N - 2 ) ClWWalksN G ) /\ ( a ` 0 ) = X ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 98 | 65 97 | sylbi |  |-  ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( b ` 0 ) = X -> ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 99 | 98 | com13 |  |-  ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 100 | 99 | 3adant3 |  |-  ( ( ( # ` b ) = 2 /\ b e. Word ( Vtx ` G ) /\ { ( b ` 0 ) , ( b ` 1 ) } e. ( Edg ` G ) ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 101 | 64 100 | sylbi |  |-  ( b e. ( 2 ClWWalksN G ) -> ( ( b ` 0 ) = X -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( b e. ( 2 ClWWalksN G ) /\ ( b ` 0 ) = X ) -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 103 | 63 102 | sylbi |  |-  ( b e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 104 | 103 | impcom |  |-  ( ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) | 
						
							| 105 | 104 | impcom |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( ( a ++ b ) ` ( N - 2 ) ) = X ) | 
						
							| 106 | 1 | 2clwwlkel |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 107 | 2 106 | sylan2 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( ( a ++ b ) e. ( X C N ) <-> ( ( a ++ b ) e. ( X ( ClWWalksNOn ` G ) N ) /\ ( ( a ++ b ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 109 | 62 105 108 | mpbir2and |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( a ++ b ) e. ( X C N ) ) | 
						
							| 110 |  | eleq1 |  |-  ( W = ( a ++ b ) -> ( W e. ( X C N ) <-> ( a ++ b ) e. ( X C N ) ) ) | 
						
							| 111 | 109 110 | syl5ibrcom |  |-  ( ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) /\ b e. ( X ( ClWWalksNOn ` G ) 2 ) ) ) -> ( W = ( a ++ b ) -> W e. ( X C N ) ) ) | 
						
							| 112 | 111 | rexlimdvva |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) -> W e. ( X C N ) ) ) | 
						
							| 113 | 53 112 | impbid |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> E. a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) E. b e. ( X ( ClWWalksNOn ` G ) 2 ) W = ( a ++ b ) ) ) |