| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 2 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 3 | 2 | simplbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> W e. ( N ClWWalksN G ) ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> W e. ( N ClWWalksN G ) ) | 
						
							| 5 |  | simpr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> X = ( W ` 0 ) ) | 
						
							| 7 | 2 6 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X = ( W ` 0 ) ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( W ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) | 
						
							| 11 |  | clwwnrepclwwn |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) | 
						
							| 12 | 1 4 10 11 | syl3anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) | 
						
							| 13 |  | 2clwwlklem |  |-  ( ( W e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 14 | 3 13 | sylan |  |-  ( ( W e. ( X ( ClWWalksNOn ` G ) N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 15 | 14 | ancoms |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 17 | 2 | simprbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( W ` 0 ) = X ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W ` 0 ) = X ) | 
						
							| 19 | 16 18 | eqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( ( W prefix ( N - 2 ) ) ` 0 ) = X ) | 
						
							| 20 |  | isclwwlknon |  |-  ( ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( W prefix ( N - 2 ) ) ` 0 ) = X ) ) | 
						
							| 21 | 12 19 20 | sylanbrc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = X ) -> ( W prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |