| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | clwwlknbp |  |-  ( W e. ( N ClWWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) ) | 
						
							| 4 |  | simpll |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 5 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 6 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ( 2 ... N ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( 2 ... N ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> N e. ( 2 ... N ) ) | 
						
							| 9 |  | oveq2 |  |-  ( ( # ` W ) = N -> ( 2 ... ( # ` W ) ) = ( 2 ... N ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ( # ` W ) = N -> ( N e. ( 2 ... ( # ` W ) ) <-> N e. ( 2 ... N ) ) ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( N e. ( 2 ... ( # ` W ) ) <-> N e. ( 2 ... N ) ) ) | 
						
							| 12 | 8 11 | mpbird |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> N e. ( 2 ... ( # ` W ) ) ) | 
						
							| 13 | 4 12 | jca |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( N e. ( ZZ>= ` 3 ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) ) | 
						
							| 15 | 3 14 | syl |  |-  ( W e. ( N ClWWalksN G ) -> ( N e. ( ZZ>= ` 3 ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( N e. ( ZZ>= ` 3 ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) ) | 
						
							| 17 | 1 16 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( N e. ( ZZ>= ` 3 ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) ) | 
						
							| 18 | 17 | impcom |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) ) | 
						
							| 19 |  | swrds2m |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) | 
						
							| 22 |  | simp3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) | 
						
							| 23 |  | eqidd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 1 ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 24 | 22 23 | s2eqd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> = <" ( W ` 0 ) ( W ` ( N - 1 ) ) "> ) | 
						
							| 25 |  | simpr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) | 
						
							| 26 |  | eqidd |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` ( N - 1 ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 27 | 25 26 | s2eqd |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> <" ( W ` 0 ) ( W ` ( N - 1 ) ) "> = <" X ( W ` ( N - 1 ) ) "> ) | 
						
							| 28 | 1 27 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> <" ( W ` 0 ) ( W ` ( N - 1 ) ) "> = <" X ( W ` ( N - 1 ) ) "> ) | 
						
							| 29 | 28 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> <" ( W ` 0 ) ( W ` ( N - 1 ) ) "> = <" X ( W ` ( N - 1 ) ) "> ) | 
						
							| 30 | 21 24 29 | 3eqtrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" X ( W ` ( N - 1 ) ) "> ) | 
						
							| 31 |  | clwwlknonmpo |  |-  ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) | 
						
							| 32 | 31 | elmpocl1 |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> X e. ( Vtx ` G ) ) | 
						
							| 33 | 32 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> X e. ( Vtx ` G ) ) | 
						
							| 34 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 35 |  | fzo0end |  |-  ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 38 |  | oveq2 |  |-  ( ( # ` W ) = N -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) | 
						
							| 39 | 38 | ad2antlr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) | 
						
							| 40 | 39 | eleq2d |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 41 | 37 40 | mpbird |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 42 |  | wrdsymbcl |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) | 
						
							| 43 | 4 41 42 | syl2anc |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ N e. ( ZZ>= ` 3 ) ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( N e. ( ZZ>= ` 3 ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) ) | 
						
							| 45 | 3 44 | syl |  |-  ( W e. ( N ClWWalksN G ) -> ( N e. ( ZZ>= ` 3 ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( N e. ( ZZ>= ` 3 ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) ) | 
						
							| 47 | 1 46 | sylbi |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) -> ( N e. ( ZZ>= ` 3 ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) ) | 
						
							| 48 | 47 | impcom |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) | 
						
							| 49 | 48 | 3adant3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 1 ) ) e. ( Vtx ` G ) ) | 
						
							| 50 |  | preq1 |  |-  ( ( W ` 0 ) = X -> { ( W ` 0 ) , ( W ` ( N - 1 ) ) } = { X , ( W ` ( N - 1 ) ) } ) | 
						
							| 51 | 50 | adantl |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> { ( W ` 0 ) , ( W ` ( N - 1 ) ) } = { X , ( W ` ( N - 1 ) ) } ) | 
						
							| 52 | 51 | eqcomd |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> { X , ( W ` ( N - 1 ) ) } = { ( W ` 0 ) , ( W ` ( N - 1 ) ) } ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { X , ( W ` ( N - 1 ) ) } = { ( W ` 0 ) , ( W ` ( N - 1 ) ) } ) | 
						
							| 54 |  | prcom |  |-  { ( W ` 0 ) , ( W ` ( N - 1 ) ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } | 
						
							| 55 | 53 54 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { X , ( W ` ( N - 1 ) ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) | 
						
							| 56 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 57 | 2 56 | clwwlknp |  |-  ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 60 |  | lsw |  |-  ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 61 |  | fvoveq1 |  |-  ( ( # ` W ) = N -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 62 | 60 61 | sylan9eq |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( lastS ` W ) = ( W ` ( N - 1 ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) -> ( lastS ` W ) = ( W ` ( N - 1 ) ) ) | 
						
							| 64 | 63 | preq1d |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) | 
						
							| 65 | 64 | eleq1d |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 66 | 65 | biimpd |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 67 | 66 | ex |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 68 | 67 | com23 |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 69 | 68 | a1d |  |-  ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 70 | 69 | 3imp |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 71 | 59 70 | mpcom |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) | 
						
							| 72 | 55 71 | eqeltrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { X , ( W ` ( N - 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 73 | 1 72 | syl3an2b |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> { X , ( W ` ( N - 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 74 |  | eqid |  |-  ( ClWWalksNOn ` G ) = ( ClWWalksNOn ` G ) | 
						
							| 75 | 74 2 56 | s2elclwwlknon2 |  |-  ( ( X e. ( Vtx ` G ) /\ ( W ` ( N - 1 ) ) e. ( Vtx ` G ) /\ { X , ( W ` ( N - 1 ) ) } e. ( Edg ` G ) ) -> <" X ( W ` ( N - 1 ) ) "> e. ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 76 | 33 49 73 75 | syl3anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> <" X ( W ` ( N - 1 ) ) "> e. ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 77 | 30 76 | eqeltrd |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( X ( ClWWalksNOn ` G ) N ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W substr <. ( N - 2 ) , N >. ) e. ( X ( ClWWalksNOn ` G ) 2 ) ) |