| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon2.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 2 |  | clwwlknon2x.v |  |-  V = ( Vtx ` G ) | 
						
							| 3 |  | clwwlknon2x.e |  |-  E = ( Edg ` G ) | 
						
							| 4 |  | s2cl |  |-  ( ( X e. V /\ Y e. V ) -> <" X Y "> e. Word V ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> <" X Y "> e. Word V ) | 
						
							| 6 |  | s2len |  |-  ( # ` <" X Y "> ) = 2 | 
						
							| 7 | 6 | a1i |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( # ` <" X Y "> ) = 2 ) | 
						
							| 8 |  | s2fv0 |  |-  ( X e. V -> ( <" X Y "> ` 0 ) = X ) | 
						
							| 9 | 8 | adantr |  |-  ( ( X e. V /\ Y e. V ) -> ( <" X Y "> ` 0 ) = X ) | 
						
							| 10 |  | s2fv1 |  |-  ( Y e. V -> ( <" X Y "> ` 1 ) = Y ) | 
						
							| 11 | 10 | adantl |  |-  ( ( X e. V /\ Y e. V ) -> ( <" X Y "> ` 1 ) = Y ) | 
						
							| 12 | 9 11 | preq12d |  |-  ( ( X e. V /\ Y e. V ) -> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } = { X , Y } ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( X e. V /\ Y e. V ) -> { X , Y } = { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } ) | 
						
							| 14 | 13 | eleq1d |  |-  ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E <-> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) ) | 
						
							| 15 | 14 | biimp3a |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) | 
						
							| 16 | 9 | 3adant3 |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( <" X Y "> ` 0 ) = X ) | 
						
							| 17 | 7 15 16 | 3jca |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) | 
						
							| 18 |  | fveqeq2 |  |-  ( w = <" X Y "> -> ( ( # ` w ) = 2 <-> ( # ` <" X Y "> ) = 2 ) ) | 
						
							| 19 |  | fveq1 |  |-  ( w = <" X Y "> -> ( w ` 0 ) = ( <" X Y "> ` 0 ) ) | 
						
							| 20 |  | fveq1 |  |-  ( w = <" X Y "> -> ( w ` 1 ) = ( <" X Y "> ` 1 ) ) | 
						
							| 21 | 19 20 | preq12d |  |-  ( w = <" X Y "> -> { ( w ` 0 ) , ( w ` 1 ) } = { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } ) | 
						
							| 22 | 21 | eleq1d |  |-  ( w = <" X Y "> -> ( { ( w ` 0 ) , ( w ` 1 ) } e. E <-> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) ) | 
						
							| 23 | 19 | eqeq1d |  |-  ( w = <" X Y "> -> ( ( w ` 0 ) = X <-> ( <" X Y "> ` 0 ) = X ) ) | 
						
							| 24 | 18 22 23 | 3anbi123d |  |-  ( w = <" X Y "> -> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) <-> ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) ) | 
						
							| 25 | 1 2 3 | clwwlknon2x |  |-  ( X C 2 ) = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } | 
						
							| 26 | 24 25 | elrab2 |  |-  ( <" X Y "> e. ( X C 2 ) <-> ( <" X Y "> e. Word V /\ ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) ) | 
						
							| 27 | 5 17 26 | sylanbrc |  |-  ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> <" X Y "> e. ( X C 2 ) ) |