| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon2.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 2 |  | clwwlknon2x.v |  |-  V = ( Vtx ` G ) | 
						
							| 3 |  | clwwlknon2x.e |  |-  E = ( Edg ` G ) | 
						
							| 4 | 1 | clwwlknon2 |  |-  ( X C 2 ) = { w e. ( 2 ClWWalksN G ) | ( w ` 0 ) = X } | 
						
							| 5 |  | clwwlkn2 |  |-  ( w e. ( 2 ClWWalksN G ) <-> ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 6 | 5 | anbi1i |  |-  ( ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 7 |  | 3anan12 |  |-  ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 8 | 7 | anbi1i |  |-  ( ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 9 |  | anass |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word ( Vtx ` G ) /\ ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) ) | 
						
							| 10 | 2 | eqcomi |  |-  ( Vtx ` G ) = V | 
						
							| 11 | 10 | wrdeqi |  |-  Word ( Vtx ` G ) = Word V | 
						
							| 12 | 11 | eleq2i |  |-  ( w e. Word ( Vtx ` G ) <-> w e. Word V ) | 
						
							| 13 |  | df-3an |  |-  ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) /\ ( w ` 0 ) = X ) ) | 
						
							| 14 | 3 | eleq2i |  |-  ( { ( w ` 0 ) , ( w ` 1 ) } e. E <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) <-> ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 16 | 15 | anbi1i |  |-  ( ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 17 | 13 16 | bitr2i |  |-  ( ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) | 
						
							| 18 | 12 17 | anbi12i |  |-  ( ( w e. Word ( Vtx ` G ) /\ ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) | 
						
							| 19 | 9 18 | bitri |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) | 
						
							| 20 | 8 19 | bitri |  |-  ( ( ( ( # ` w ) = 2 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) | 
						
							| 21 | 6 20 | bitri |  |-  ( ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) ) ) | 
						
							| 22 | 21 | rabbia2 |  |-  { w e. ( 2 ClWWalksN G ) | ( w ` 0 ) = X } = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } | 
						
							| 23 | 4 22 | eqtri |  |-  ( X C 2 ) = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } |