Metamath Proof Explorer


Theorem clwwlknon2x

Description: The set of closed walks on vertex X of length 2 in a graph G as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon2.c C=ClWWalksNOnG
clwwlknon2x.v V=VtxG
clwwlknon2x.e E=EdgG
Assertion clwwlknon2x XC2=wWordV|w=2w0w1Ew0=X

Proof

Step Hyp Ref Expression
1 clwwlknon2.c C=ClWWalksNOnG
2 clwwlknon2x.v V=VtxG
3 clwwlknon2x.e E=EdgG
4 1 clwwlknon2 XC2=w2ClWWalksNG|w0=X
5 clwwlkn2 w2ClWWalksNGw=2wWordVtxGw0w1EdgG
6 5 anbi1i w2ClWWalksNGw0=Xw=2wWordVtxGw0w1EdgGw0=X
7 3anan12 w=2wWordVtxGw0w1EdgGwWordVtxGw=2w0w1EdgG
8 7 anbi1i w=2wWordVtxGw0w1EdgGw0=XwWordVtxGw=2w0w1EdgGw0=X
9 anass wWordVtxGw=2w0w1EdgGw0=XwWordVtxGw=2w0w1EdgGw0=X
10 2 eqcomi VtxG=V
11 10 wrdeqi WordVtxG=WordV
12 11 eleq2i wWordVtxGwWordV
13 df-3an w=2w0w1Ew0=Xw=2w0w1Ew0=X
14 3 eleq2i w0w1Ew0w1EdgG
15 14 anbi2i w=2w0w1Ew=2w0w1EdgG
16 15 anbi1i w=2w0w1Ew0=Xw=2w0w1EdgGw0=X
17 13 16 bitr2i w=2w0w1EdgGw0=Xw=2w0w1Ew0=X
18 12 17 anbi12i wWordVtxGw=2w0w1EdgGw0=XwWordVw=2w0w1Ew0=X
19 9 18 bitri wWordVtxGw=2w0w1EdgGw0=XwWordVw=2w0w1Ew0=X
20 8 19 bitri w=2wWordVtxGw0w1EdgGw0=XwWordVw=2w0w1Ew0=X
21 6 20 bitri w2ClWWalksNGw0=XwWordVw=2w0w1Ew0=X
22 21 rabbia2 w2ClWWalksNG|w0=X=wWordV|w=2w0w1Ew0=X
23 4 22 eqtri XC2=wWordV|w=2w0w1Ew0=X