| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon2.c | ⊢ 𝐶  =  ( ClWWalksNOn ‘ 𝐺 ) | 
						
							| 2 |  | clwwlknon2x.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | clwwlknon2x.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 | clwwlknon2 | ⊢ ( 𝑋 𝐶 2 )  =  { 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 5 |  | clwwlkn2 | ⊢ ( 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ↔  ( ( ♯ ‘ 𝑤 )  =  2  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 6 | 5 | anbi1i | ⊢ ( ( 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 7 |  | 3anan12 | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 9 |  | anass | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 10 | 2 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 11 | 10 | wrdeqi | ⊢ Word  ( Vtx ‘ 𝐺 )  =  Word  𝑉 | 
						
							| 12 | 11 | eleq2i | ⊢ ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑤  ∈  Word  𝑉 ) | 
						
							| 13 |  | df-3an | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 14 | 3 | eleq2i | ⊢ ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸 )  ↔  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 16 | 15 | anbi1i | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 17 | 13 16 | bitr2i | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 18 | 12 17 | anbi12i | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 19 | 9 18 | bitri | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 20 | 8 19 | bitri | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 21 | 6 20 | bitri | ⊢ ( ( 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 22 | 21 | rabbia2 | ⊢ { 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 23 | 4 22 | eqtri | ⊢ ( 𝑋 𝐶 2 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝐸  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } |