| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 2 3 | isclwwlknx | ⊢ ( 2  ∈  ℕ  →  ( 𝑊  ∈  ( 2  ClWWalksN  𝐺 )  ↔  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 ) ) ) | 
						
							| 5 | 1 4 | ax-mp | ⊢ ( 𝑊  ∈  ( 2  ClWWalksN  𝐺 )  ↔  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 2  −  1 ) ) | 
						
							| 8 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 9 | 7 8 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  1 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 0 ..^ 1 ) ) | 
						
							| 11 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  { 0 } ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  { 0 } ) | 
						
							| 14 | 13 | raleqdv | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  ∀ 𝑖  ∈  { 0 } { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 17 |  | fv0p1e1 | ⊢ ( 𝑖  =  0  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ 1 ) ) | 
						
							| 18 | 16 17 | preq12d | ⊢ ( 𝑖  =  0  →  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) } ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑖  =  0  →  ( { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 20 | 15 19 | ralsn | ⊢ ( ∀ 𝑖  ∈  { 0 } { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 21 | 14 20 | bitrdi | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 22 |  | prcom | ⊢ { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  =  { ( 𝑊 ‘ 0 ) ,  ( lastS ‘ 𝑊 ) } | 
						
							| 23 |  | lsw | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 24 | 9 | fveq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ 1 ) ) | 
						
							| 25 | 23 24 | sylan9eqr | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ 1 ) ) | 
						
							| 26 | 25 | preq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  { ( 𝑊 ‘ 0 ) ,  ( lastS ‘ 𝑊 ) }  =  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) } ) | 
						
							| 27 | 22 26 | eqtrid | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  =  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) } ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 29 | 21 28 | anbi12d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 30 |  | anidm | ⊢ ( ( { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 31 | 29 30 | bitrdi | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 32 | 31 | pm5.32da | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ↔  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 33 | 6 32 | bitrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  2  →  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 34 | 33 | pm5.32ri | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 )  ↔  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 ) ) | 
						
							| 35 |  | 3anass | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  2  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 36 |  | ancom | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  2  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ↔  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 ) ) | 
						
							| 37 | 35 36 | bitr2i | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑊 )  =  2 )  ↔  ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 38 | 5 34 37 | 3bitri | ⊢ ( 𝑊  ∈  ( 2  ClWWalksN  𝐺 )  ↔  ( ( ♯ ‘ 𝑊 )  =  2  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) |