| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 4 | 2 3 | isclwwlknx |  |-  ( 2 e. NN -> ( W e. ( 2 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) ) | 
						
							| 5 | 1 4 | ax-mp |  |-  ( W e. ( 2 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) | 
						
							| 6 |  | 3anass |  |-  ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( ( # ` W ) = 2 -> ( ( # ` W ) - 1 ) = ( 2 - 1 ) ) | 
						
							| 8 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( ( # ` W ) = 2 -> ( ( # ` W ) - 1 ) = 1 ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( # ` W ) = 2 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = ( 0 ..^ 1 ) ) | 
						
							| 11 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( ( # ` W ) = 2 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = { 0 } ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = { 0 } ) | 
						
							| 14 | 13 | raleqdv |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. { 0 } { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 |  | fveq2 |  |-  ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 17 |  | fv0p1e1 |  |-  ( i = 0 -> ( W ` ( i + 1 ) ) = ( W ` 1 ) ) | 
						
							| 18 | 16 17 | preq12d |  |-  ( i = 0 -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` 0 ) , ( W ` 1 ) } ) | 
						
							| 19 | 18 | eleq1d |  |-  ( i = 0 -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 20 | 15 19 | ralsn |  |-  ( A. i e. { 0 } { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 21 | 14 20 | bitrdi |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 22 |  | prcom |  |-  { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( lastS ` W ) } | 
						
							| 23 |  | lsw |  |-  ( W e. Word ( Vtx ` G ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) | 
						
							| 24 | 9 | fveq2d |  |-  ( ( # ` W ) = 2 -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` 1 ) ) | 
						
							| 25 | 23 24 | sylan9eqr |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( lastS ` W ) = ( W ` 1 ) ) | 
						
							| 26 | 25 | preq2d |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> { ( W ` 0 ) , ( lastS ` W ) } = { ( W ` 0 ) , ( W ` 1 ) } ) | 
						
							| 27 | 22 26 | eqtrid |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 1 ) } ) | 
						
							| 28 | 27 | eleq1d |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 29 | 21 28 | anbi12d |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 30 |  | anidm |  |-  ( ( { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 31 | 29 30 | bitrdi |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 32 | 31 | pm5.32da |  |-  ( ( # ` W ) = 2 -> ( ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 33 | 6 32 | bitrid |  |-  ( ( # ` W ) = 2 -> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 34 | 33 | pm5.32ri |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) | 
						
							| 35 |  | 3anass |  |-  ( ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) <-> ( ( # ` W ) = 2 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 36 |  | ancom |  |-  ( ( ( # ` W ) = 2 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) ) | 
						
							| 37 | 35 36 | bitr2i |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 2 ) <-> ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 38 | 5 34 37 | 3bitri |  |-  ( W e. ( 2 ClWWalksN G ) <-> ( ( # ` W ) = 2 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |