| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 2 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) | 
						
							| 3 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 4 |  | subeluzsub |  |-  ( ( N e. ZZ /\ 2 e. ( ZZ>= ` 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) | 
						
							| 6 | 1 5 | jca |  |-  ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) ) | 
						
							| 8 |  | clwwlknwwlksn |  |-  ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> W e. ( ( N - 1 ) WWalksN G ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W ` ( N - 2 ) ) = ( W ` 0 ) ) | 
						
							| 11 |  | clwwlkinwwlk |  |-  ( ( ( ( N - 2 ) e. NN /\ ( N - 1 ) e. ( ZZ>= ` ( N - 2 ) ) ) /\ W e. ( ( N - 1 ) WWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) | 
						
							| 12 | 7 9 10 11 | syl3anc |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ W e. ( N ClWWalksN G ) /\ ( W ` ( N - 2 ) ) = ( W ` 0 ) ) -> ( W prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |