| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2clwwlk.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  2 e. ( ZZ>= ` 2 ) | 
						
							| 5 | 1 | 2clwwlk |  |-  ( ( X e. V /\ 2 e. ( ZZ>= ` 2 ) ) -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( X e. V -> ( X C 2 ) = { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } ) | 
						
							| 7 |  | 2cn |  |-  2 e. CC | 
						
							| 8 | 7 | subidi |  |-  ( 2 - 2 ) = 0 | 
						
							| 9 | 8 | fveq2i |  |-  ( w ` ( 2 - 2 ) ) = ( w ` 0 ) | 
						
							| 10 |  | isclwwlknon |  |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) <-> ( w e. ( 2 ClWWalksN G ) /\ ( w ` 0 ) = X ) ) | 
						
							| 11 | 10 | simprbi |  |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` 0 ) = X ) | 
						
							| 12 | 9 11 | eqtrid |  |-  ( w e. ( X ( ClWWalksNOn ` G ) 2 ) -> ( w ` ( 2 - 2 ) ) = X ) | 
						
							| 13 | 12 | rabeqc |  |-  { w e. ( X ( ClWWalksNOn ` G ) 2 ) | ( w ` ( 2 - 2 ) ) = X } = ( X ( ClWWalksNOn ` G ) 2 ) | 
						
							| 14 | 6 13 | eqtrdi |  |-  ( X e. V -> ( X C 2 ) = ( X ( ClWWalksNOn ` G ) 2 ) ) |