Metamath Proof Explorer


Theorem 2clwwlk2

Description: The set ( X C 2 ) of double loops of length 2 on a vertex X is equal to the set of closed walks with length 2 on X . Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022) (Revised by AV, 20-Apr-2022)

Ref Expression
Hypothesis 2clwwlk.c 𝐶 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } )
Assertion 2clwwlk2 ( 𝑋𝑉 → ( 𝑋 𝐶 2 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )

Proof

Step Hyp Ref Expression
1 2clwwlk.c 𝐶 = ( 𝑣𝑉 , 𝑛 ∈ ( ℤ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } )
2 2z 2 ∈ ℤ
3 uzid ( 2 ∈ ℤ → 2 ∈ ( ℤ ‘ 2 ) )
4 2 3 ax-mp 2 ∈ ( ℤ ‘ 2 )
5 1 2clwwlk ( ( 𝑋𝑉 ∧ 2 ∈ ( ℤ ‘ 2 ) ) → ( 𝑋 𝐶 2 ) = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } )
6 4 5 mpan2 ( 𝑋𝑉 → ( 𝑋 𝐶 2 ) = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } )
7 2cn 2 ∈ ℂ
8 7 subidi ( 2 − 2 ) = 0
9 8 fveq2i ( 𝑤 ‘ ( 2 − 2 ) ) = ( 𝑤 ‘ 0 )
10 isclwwlknon ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ↔ ( 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) )
11 10 simprbi ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) → ( 𝑤 ‘ 0 ) = 𝑋 )
12 9 11 syl5eq ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) → ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 )
13 12 rabeqc { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )
14 6 13 eqtrdi ( 𝑋𝑉 → ( 𝑋 𝐶 2 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )