| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2clwwlk.c | ⊢ 𝐶  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) | 
						
							| 2 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 3 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ 2  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 5 | 1 | 2clwwlk | ⊢ ( ( 𝑋  ∈  𝑉  ∧  2  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋 𝐶 2 )  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∣  ( 𝑤 ‘ ( 2  −  2 ) )  =  𝑋 } ) | 
						
							| 6 | 4 5 | mpan2 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 𝐶 2 )  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∣  ( 𝑤 ‘ ( 2  −  2 ) )  =  𝑋 } ) | 
						
							| 7 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 8 | 7 | subidi | ⊢ ( 2  −  2 )  =  0 | 
						
							| 9 | 8 | fveq2i | ⊢ ( 𝑤 ‘ ( 2  −  2 ) )  =  ( 𝑤 ‘ 0 ) | 
						
							| 10 |  | isclwwlknon | ⊢ ( 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ↔  ( 𝑤  ∈  ( 2  ClWWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) | 
						
							| 12 | 9 11 | eqtrid | ⊢ ( 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  →  ( 𝑤 ‘ ( 2  −  2 ) )  =  𝑋 ) | 
						
							| 13 | 12 | rabeqc | ⊢ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∣  ( 𝑤 ‘ ( 2  −  2 ) )  =  𝑋 }  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) | 
						
							| 14 | 6 13 | eqtrdi | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 𝐶 2 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) |