| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | numclwwlk.t |  |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 5 | 1 2 3 | extwwlkfabel |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( u e. ( X C N ) <-> ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 6 |  | simpr1 |  |-  ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> ( u prefix ( N - 2 ) ) e. F ) | 
						
							| 7 |  | simpr2 |  |-  ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) | 
						
							| 8 | 6 7 | opelxpd |  |-  ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 9 | 5 8 | biimtrdi |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( u e. ( X C N ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ u e. ( X C N ) ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 11 | 10 4 | fmptd |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) ) |