| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 | 1 2 3 | extwwlkfab |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> W e. { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) ) | 
						
							| 6 |  | oveq1 |  |-  ( w = W -> ( w prefix ( N - 2 ) ) = ( W prefix ( N - 2 ) ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( w = W -> ( ( w prefix ( N - 2 ) ) e. F <-> ( W prefix ( N - 2 ) ) e. F ) ) | 
						
							| 8 |  | fveq1 |  |-  ( w = W -> ( w ` ( N - 1 ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 9 | 8 | eleq1d |  |-  ( w = W -> ( ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) <-> ( W ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) ) | 
						
							| 10 |  | fveq1 |  |-  ( w = W -> ( w ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( w = W -> ( ( w ` ( N - 2 ) ) = X <-> ( W ` ( N - 2 ) ) = X ) ) | 
						
							| 12 | 7 9 11 | 3anbi123d |  |-  ( w = W -> ( ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( W prefix ( N - 2 ) ) e. F /\ ( W ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 13 | 12 | elrab |  |-  ( W e. { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } <-> ( W e. ( N ClWWalksN G ) /\ ( ( W prefix ( N - 2 ) ) e. F /\ ( W ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( W ` ( N - 2 ) ) = X ) ) ) | 
						
							| 14 | 5 13 | bitrdi |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X C N ) <-> ( W e. ( N ClWWalksN G ) /\ ( ( W prefix ( N - 2 ) ) e. F /\ ( W ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( W ` ( N - 2 ) ) = X ) ) ) ) |