| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | simpl2 |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> X e. V ) | 
						
							| 5 | 1 | nbgrisvtx |  |-  ( Y e. ( G NeighbVtx X ) -> Y e. V ) | 
						
							| 6 | 5 | ad2antll |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> Y e. V ) | 
						
							| 7 |  | simpl3 |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 8 |  | nbgrsym |  |-  ( Y e. ( G NeighbVtx X ) <-> X e. ( G NeighbVtx Y ) ) | 
						
							| 9 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 10 | 9 | nbusgreledg |  |-  ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. ( Edg ` G ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) -> { X , Y } e. ( Edg ` G ) ) ) | 
						
							| 12 | 8 11 | biimtrid |  |-  ( G e. USGraph -> ( Y e. ( G NeighbVtx X ) -> { X , Y } e. ( Edg ` G ) ) ) | 
						
							| 13 | 12 | adantld |  |-  ( G e. USGraph -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. ( Edg ` G ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. ( Edg ` G ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> { X , Y } e. ( Edg ` G ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> W e. F ) | 
						
							| 17 | 16 3 | eleqtrdi |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 18 | 1 9 | clwwlknonex2 |  |-  ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ { X , Y } e. ( Edg ` G ) /\ W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) ) | 
						
							| 19 | 4 6 7 15 17 18 | syl311anc |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) ) | 
						
							| 20 | 3 | eleq2i |  |-  ( W e. F <-> W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 21 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 22 | 21 | nnne0d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) =/= 0 ) | 
						
							| 23 | 1 9 | clwwlknonel |  |-  ( ( N - 2 ) =/= 0 -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( N e. ( ZZ>= ` 3 ) -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 25 | 24 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 26 | 20 25 | bitrid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. F <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 27 |  | 3simpa |  |-  ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) ) | 
						
							| 29 |  | simp32 |  |-  ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) | 
						
							| 30 | 29 5 | anim12i |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( X e. V /\ Y e. V ) ) | 
						
							| 31 |  | simpl33 |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 32 | 28 30 31 | 3jca |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) | 
						
							| 33 | 32 | 3exp1 |  |-  ( W e. Word V -> ( ( # ` W ) = ( N - 2 ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) | 
						
							| 36 | 35 | 3adant3 |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) | 
						
							| 37 | 36 | com12 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) | 
						
							| 38 | 26 37 | sylbid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. F -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) | 
						
							| 39 | 38 | imp32 |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) | 
						
							| 40 |  | numclwwlk1lem2foalem |  |-  ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) | 
						
							| 42 |  | eleq1a |  |-  ( W e. F -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F ) ) | 
						
							| 43 | 16 42 | syl |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F ) ) | 
						
							| 44 |  | eleq1a |  |-  ( Y e. ( G NeighbVtx X ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) ) | 
						
							| 45 | 44 | ad2antll |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) ) | 
						
							| 46 |  | idd |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) | 
						
							| 47 | 43 45 46 | 3anim123d |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) | 
						
							| 48 | 41 47 | mpd |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) | 
						
							| 49 | 1 2 3 | extwwlkfabel |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) <-> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) /\ ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) <-> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) /\ ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) ) | 
						
							| 51 | 19 48 50 | mpbir2and |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) ) | 
						
							| 52 | 51 | ex |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) ) ) |