Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) <-> ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
2 |
|
necom |
|- ( N =/= K <-> K =/= N ) |
3 |
|
prcom |
|- { K , N } = { N , K } |
4 |
3
|
sseq1i |
|- ( { K , N } C_ e <-> { N , K } C_ e ) |
5 |
4
|
rexbii |
|- ( E. e e. ( Edg ` G ) { K , N } C_ e <-> E. e e. ( Edg ` G ) { N , K } C_ e ) |
6 |
1 2 5
|
3anbi123i |
|- ( ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ K =/= N /\ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
9 |
7 8
|
nbgrel |
|- ( N e. ( G NeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) ) |
10 |
7 8
|
nbgrel |
|- ( K e. ( G NeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ K =/= N /\ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
11 |
6 9 10
|
3bitr4i |
|- ( N e. ( G NeighbVtx K ) <-> K e. ( G NeighbVtx N ) ) |