| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 5 | 2 | 2clwwlk |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 8 |  | clwwlknon |  |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | 
						
							| 9 | 8 | rabeqi |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } | 
						
							| 10 |  | rabrab |  |-  { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) } | 
						
							| 11 |  | simpll3 |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> w e. ( N ClWWalksN G ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = X ) | 
						
							| 14 |  | simpl |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` 0 ) = X ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> X = ( w ` 0 ) ) | 
						
							| 16 | 13 15 | eqtrd |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) ) | 
						
							| 18 |  | clwwnrepclwwn |  |-  ( ( N e. ( ZZ>= ` 3 ) /\ w e. ( N ClWWalksN G ) /\ ( w ` ( N - 2 ) ) = ( w ` 0 ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) | 
						
							| 19 | 11 12 17 18 | syl3anc |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) | 
						
							| 20 | 14 | adantl |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` 0 ) = X ) | 
						
							| 21 | 19 20 | jca |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) ) | 
						
							| 22 |  | simp1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> G e. USGraph ) | 
						
							| 23 | 22 | anim1i |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) ) | 
						
							| 25 |  | clwwlknlbonbgr1 |  |-  ( ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 27 |  | oveq2 |  |-  ( X = ( w ` 0 ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 28 | 27 | eqcoms |  |-  ( ( w ` 0 ) = X -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) | 
						
							| 31 | 26 30 | eleqtrrd |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) | 
						
							| 32 | 13 | adantl |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = X ) | 
						
							| 33 | 21 31 32 | 3jca |  |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) | 
						
							| 36 | 35 | anim1i |  |-  ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 37 | 36 | 3adant2 |  |-  ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 38 | 34 37 | impbid1 |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 39 |  | 2clwwlklem |  |-  ( ( w e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) | 
						
							| 40 | 39 | 3ad2antr3 |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) | 
						
							| 41 | 40 | ancoms |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( w ` 0 ) = ( ( w prefix ( N - 2 ) ) ` 0 ) ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w ` 0 ) = X <-> ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) | 
						
							| 44 | 43 | anbi2d |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) | 
						
							| 45 | 44 | 3anbi1d |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 46 | 3 | eleq2i |  |-  ( ( w prefix ( N - 2 ) ) e. F <-> ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 47 |  | isclwwlknon |  |-  ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) | 
						
							| 48 | 47 | a1i |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) | 
						
							| 49 | 46 48 | bitrid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. F <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) | 
						
							| 50 | 49 | 3anbi1d |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 51 | 50 | bicomd |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 53 | 38 45 52 | 3bitrd |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) | 
						
							| 54 | 53 | rabbidva |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) | 
						
							| 55 | 10 54 | eqtrid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) | 
						
							| 56 | 9 55 | eqtrid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) | 
						
							| 57 | 7 56 | eqtrd |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) |