| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extwwlkfab.v |
|
| 2 |
|
extwwlkfab.c |
|
| 3 |
|
extwwlkfab.f |
|
| 4 |
|
uzuzle23 |
|
| 5 |
2
|
2clwwlk |
|
| 6 |
4 5
|
sylan2 |
|
| 7 |
6
|
3adant1 |
|
| 8 |
|
clwwlknon |
|
| 9 |
8
|
rabeqi |
|
| 10 |
|
rabrab |
|
| 11 |
|
simpll3 |
|
| 12 |
|
simplr |
|
| 13 |
|
simpr |
|
| 14 |
|
simpl |
|
| 15 |
14
|
eqcomd |
|
| 16 |
13 15
|
eqtrd |
|
| 17 |
16
|
adantl |
|
| 18 |
|
clwwnrepclwwn |
|
| 19 |
11 12 17 18
|
syl3anc |
|
| 20 |
14
|
adantl |
|
| 21 |
19 20
|
jca |
|
| 22 |
|
simp1 |
|
| 23 |
22
|
anim1i |
|
| 24 |
23
|
adantr |
|
| 25 |
|
clwwlknlbonbgr1 |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
oveq2 |
|
| 28 |
27
|
eqcoms |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantl |
|
| 31 |
26 30
|
eleqtrrd |
|
| 32 |
13
|
adantl |
|
| 33 |
21 31 32
|
3jca |
|
| 34 |
33
|
ex |
|
| 35 |
|
simpr |
|
| 36 |
35
|
anim1i |
|
| 37 |
36
|
3adant2 |
|
| 38 |
34 37
|
impbid1 |
|
| 39 |
|
2clwwlklem |
|
| 40 |
39
|
3ad2antr3 |
|
| 41 |
40
|
ancoms |
|
| 42 |
41
|
eqcomd |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
43
|
anbi2d |
|
| 45 |
44
|
3anbi1d |
|
| 46 |
3
|
eleq2i |
|
| 47 |
|
isclwwlknon |
|
| 48 |
47
|
a1i |
|
| 49 |
46 48
|
bitrid |
|
| 50 |
49
|
3anbi1d |
|
| 51 |
50
|
bicomd |
|
| 52 |
51
|
adantr |
|
| 53 |
38 45 52
|
3bitrd |
|
| 54 |
53
|
rabbidva |
|
| 55 |
10 54
|
eqtrid |
|
| 56 |
9 55
|
eqtrid |
|
| 57 |
7 56
|
eqtrd |
|