| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  | 
						
							| 2 |  | extwwlkfab.c |  | 
						
							| 3 |  | extwwlkfab.f |  | 
						
							| 4 |  | uzuzle23 |  | 
						
							| 5 | 2 | 2clwwlk |  | 
						
							| 6 | 4 5 | sylan2 |  | 
						
							| 7 | 6 | 3adant1 |  | 
						
							| 8 |  | clwwlknon |  | 
						
							| 9 | 8 | rabeqi |  | 
						
							| 10 |  | rabrab |  | 
						
							| 11 |  | simpll3 |  | 
						
							| 12 |  | simplr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | simpl |  | 
						
							| 15 | 14 | eqcomd |  | 
						
							| 16 | 13 15 | eqtrd |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | clwwnrepclwwn |  | 
						
							| 19 | 11 12 17 18 | syl3anc |  | 
						
							| 20 | 14 | adantl |  | 
						
							| 21 | 19 20 | jca |  | 
						
							| 22 |  | simp1 |  | 
						
							| 23 | 22 | anim1i |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | clwwlknlbonbgr1 |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 27 | eqcoms |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 26 30 | eleqtrrd |  | 
						
							| 32 | 13 | adantl |  | 
						
							| 33 | 21 31 32 | 3jca |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 35 | anim1i |  | 
						
							| 37 | 36 | 3adant2 |  | 
						
							| 38 | 34 37 | impbid1 |  | 
						
							| 39 |  | 2clwwlklem |  | 
						
							| 40 | 39 | 3ad2antr3 |  | 
						
							| 41 | 40 | ancoms |  | 
						
							| 42 | 41 | eqcomd |  | 
						
							| 43 | 42 | eqeq1d |  | 
						
							| 44 | 43 | anbi2d |  | 
						
							| 45 | 44 | 3anbi1d |  | 
						
							| 46 | 3 | eleq2i |  | 
						
							| 47 |  | isclwwlknon |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 46 48 | bitrid |  | 
						
							| 50 | 49 | 3anbi1d |  | 
						
							| 51 | 50 | bicomd |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 38 45 52 | 3bitrd |  | 
						
							| 54 | 53 | rabbidva |  | 
						
							| 55 | 10 54 | eqtrid |  | 
						
							| 56 | 9 55 | eqtrid |  | 
						
							| 57 | 7 56 | eqtrd |  |