Metamath Proof Explorer


Theorem rabrab

Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017)

Ref Expression
Assertion rabrab x x A | φ | ψ = x A | φ ψ

Proof

Step Hyp Ref Expression
1 rabid x x A | φ x A φ
2 1 anbi1i x x A | φ ψ x A φ ψ
3 anass x A φ ψ x A φ ψ
4 2 3 bitri x x A | φ ψ x A φ ψ
5 4 abbii x | x x A | φ ψ = x | x A φ ψ
6 df-rab x x A | φ | ψ = x | x x A | φ ψ
7 df-rab x A | φ ψ = x | x A φ ψ
8 5 6 7 3eqtr4i x x A | φ | ψ = x A | φ ψ