Metamath Proof Explorer


Theorem rabrab

Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017)

Ref Expression
Assertion rabrab xxA|φ|ψ=xA|φψ

Proof

Step Hyp Ref Expression
1 rabid xxA|φxAφ
2 1 anbi1i xxA|φψxAφψ
3 anass xAφψxAφψ
4 2 3 bitri xxA|φψxAφψ
5 4 abbii x|xxA|φψ=x|xAφψ
6 df-rab xxA|φ|ψ=x|xxA|φψ
7 df-rab xA|φψ=x|xAφψ
8 5 6 7 3eqtr4i xxA|φ|ψ=xA|φψ