Metamath Proof Explorer


Theorem rabrab

Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017)

Ref Expression
Assertion rabrab { 𝑥 ∈ { 𝑥𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 rabid ( 𝑥 ∈ { 𝑥𝐴𝜑 } ↔ ( 𝑥𝐴𝜑 ) )
2 1 anbi1i ( ( 𝑥 ∈ { 𝑥𝐴𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
3 anass ( ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
4 2 3 bitri ( ( 𝑥 ∈ { 𝑥𝐴𝜑 } ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
5 4 abbii { 𝑥 ∣ ( 𝑥 ∈ { 𝑥𝐴𝜑 } ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) }
6 df-rab { 𝑥 ∈ { 𝑥𝐴𝜑 } ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥𝐴𝜑 } ∧ 𝜓 ) }
7 df-rab { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) }
8 5 6 7 3eqtr4i { 𝑥 ∈ { 𝑥𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }