| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 2 |
1
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ) |
| 3 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 4 |
2 3
|
bitri |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 |
4
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } |
| 6 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) } |
| 7 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } |
| 8 |
5 6 7
|
3eqtr4i |
⊢ { 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |