Metamath Proof Explorer


Theorem clwwlknlbonbgr1

Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022)

Ref Expression
Assertion clwwlknlbonbgr1 GUSGraphWNClWWalksNGWN1GNeighbVtxW0

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 clwwlknp WNClWWalksNGWWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgG
4 lsw WWordVtxGlastSW=WW1
5 fvoveq1 W=NWW1=WN1
6 4 5 sylan9eq WWordVtxGW=NlastSW=WN1
7 6 preq1d WWordVtxGW=NlastSWW0=WN1W0
8 7 eleq1d WWordVtxGW=NlastSWW0EdgGWN1W0EdgG
9 8 biimpd WWordVtxGW=NlastSWW0EdgGWN1W0EdgG
10 9 a1d WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGWN1W0EdgG
11 10 3imp WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGWN1W0EdgG
12 3 11 syl WNClWWalksNGWN1W0EdgG
13 12 adantl GUSGraphWNClWWalksNGWN1W0EdgG
14 2 nbusgreledg GUSGraphWN1GNeighbVtxW0WN1W0EdgG
15 14 adantr GUSGraphWNClWWalksNGWN1GNeighbVtxW0WN1W0EdgG
16 13 15 mpbird GUSGraphWNClWWalksNGWN1GNeighbVtxW0