| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | numclwwlk.t |  |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 5 |  | oveq1 |  |-  ( u = W -> ( u prefix ( N - 2 ) ) = ( W prefix ( N - 2 ) ) ) | 
						
							| 6 |  | fveq1 |  |-  ( u = W -> ( u ` ( N - 1 ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 7 | 5 6 | opeq12d |  |-  ( u = W -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. = <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. ) | 
						
							| 8 |  | opex |  |-  <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. e. _V | 
						
							| 9 | 7 4 8 | fvmpt |  |-  ( W e. ( X C N ) -> ( T ` W ) = <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. ) |