| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | extwwlkfab.c | ⊢ 𝐶  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) | 
						
							| 3 |  | extwwlkfab.f | ⊢ 𝐹  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) | 
						
							| 4 |  | numclwwlk.t | ⊢ 𝑇  =  ( 𝑢  ∈  ( 𝑋 𝐶 𝑁 )  ↦  〈 ( 𝑢  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑢 ‘ ( 𝑁  −  1 ) ) 〉 ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑢  =  𝑊  →  ( 𝑢  prefix  ( 𝑁  −  2 ) )  =  ( 𝑊  prefix  ( 𝑁  −  2 ) ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑢  =  𝑊  →  ( 𝑢 ‘ ( 𝑁  −  1 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 7 | 5 6 | opeq12d | ⊢ ( 𝑢  =  𝑊  →  〈 ( 𝑢  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑢 ‘ ( 𝑁  −  1 ) ) 〉  =  〈 ( 𝑊  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑊 ‘ ( 𝑁  −  1 ) ) 〉 ) | 
						
							| 8 |  | opex | ⊢ 〈 ( 𝑊  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑊 ‘ ( 𝑁  −  1 ) ) 〉  ∈  V | 
						
							| 9 | 7 4 8 | fvmpt | ⊢ ( 𝑊  ∈  ( 𝑋 𝐶 𝑁 )  →  ( 𝑇 ‘ 𝑊 )  =  〈 ( 𝑊  prefix  ( 𝑁  −  2 ) ) ,  ( 𝑊 ‘ ( 𝑁  −  1 ) ) 〉 ) |