Metamath Proof Explorer


Theorem numclwwlk1lem2f

Description: T is a function, mapping a double loop of length N on vertex X to the ordered pair of the first loop and the successor of X in the second loop, which must be a neighbor of X . (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 29-May-2021) (Proof shortened by AV, 23-Feb-2022) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
numclwwlk.t T=uXCNuprefixN2uN1
Assertion numclwwlk1lem2f GUSGraphXVN3T:XCNF×GNeighbVtxX

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 numclwwlk.t T=uXCNuprefixN2uN1
5 1 2 3 extwwlkfabel GUSGraphXVN3uXCNuNClWWalksNGuprefixN2FuN1GNeighbVtxXuN2=X
6 simpr1 uNClWWalksNGuprefixN2FuN1GNeighbVtxXuN2=XuprefixN2F
7 simpr2 uNClWWalksNGuprefixN2FuN1GNeighbVtxXuN2=XuN1GNeighbVtxX
8 6 7 opelxpd uNClWWalksNGuprefixN2FuN1GNeighbVtxXuN2=XuprefixN2uN1F×GNeighbVtxX
9 5 8 syl6bi GUSGraphXVN3uXCNuprefixN2uN1F×GNeighbVtxX
10 9 imp GUSGraphXVN3uXCNuprefixN2uN1F×GNeighbVtxX
11 10 4 fmptd GUSGraphXVN3T:XCNF×GNeighbVtxX