| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | numclwwlk.t |  |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 5 | 1 2 3 4 | numclwwlk1lem2f |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 6 |  | elxp |  |-  ( p e. ( F X. ( G NeighbVtx X ) ) <-> E. a E. b ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) ) | 
						
							| 7 | 1 2 3 | numclwwlk1lem2foa |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a e. F /\ b e. ( G NeighbVtx X ) ) -> ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) ) ) | 
						
							| 8 | 7 | com12 |  |-  ( ( a e. F /\ b e. ( G NeighbVtx X ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) ) | 
						
							| 11 |  | simpl |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) ) | 
						
							| 12 |  | fveq2 |  |-  ( x = ( ( a ++ <" X "> ) ++ <" b "> ) -> ( T ` x ) = ( T ` ( ( a ++ <" X "> ) ++ <" b "> ) ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( x = ( ( a ++ <" X "> ) ++ <" b "> ) -> ( p = ( T ` x ) <-> p = ( T ` ( ( a ++ <" X "> ) ++ <" b "> ) ) ) ) | 
						
							| 14 | 1 2 3 4 | numclwwlk1lem2fv |  |-  ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) -> ( T ` ( ( a ++ <" X "> ) ++ <" b "> ) ) = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> ( T ` ( ( a ++ <" X "> ) ++ <" b "> ) ) = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> ( p = ( T ` ( ( a ++ <" X "> ) ++ <" b "> ) ) <-> p = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) | 
						
							| 17 | 13 16 | sylan9bbr |  |-  ( ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) /\ x = ( ( a ++ <" X "> ) ++ <" b "> ) ) -> ( p = ( T ` x ) <-> p = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) | 
						
							| 18 |  | simprll |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> p = <. a , b >. ) | 
						
							| 19 | 1 | nbgrisvtx |  |-  ( b e. ( G NeighbVtx X ) -> b e. V ) | 
						
							| 20 | 3 | eleq2i |  |-  ( a e. F <-> a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 21 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 22 | 21 | nnne0d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) =/= 0 ) | 
						
							| 23 | 22 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) =/= 0 ) | 
						
							| 24 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 25 | 1 24 | clwwlknonel |  |-  ( ( N - 2 ) =/= 0 -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) /\ ( a ` 0 ) = X ) ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( a e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) /\ ( a ` 0 ) = X ) ) ) | 
						
							| 27 | 20 26 | bitrid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( a e. F <-> ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) /\ ( a ` 0 ) = X ) ) ) | 
						
							| 28 |  | df-3an |  |-  ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) /\ ( a ` 0 ) = X ) <-> ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) /\ ( a ` 0 ) = X ) ) | 
						
							| 29 | 27 28 | bitrdi |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( a e. F <-> ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) /\ ( a ` 0 ) = X ) ) ) | 
						
							| 30 |  | simplll |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> a e. Word V ) | 
						
							| 31 |  | s1cl |  |-  ( X e. V -> <" X "> e. Word V ) | 
						
							| 32 | 31 | adantr |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> <" X "> e. Word V ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> <" X "> e. Word V ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> <" X "> e. Word V ) | 
						
							| 35 |  | s1cl |  |-  ( b e. V -> <" b "> e. Word V ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> <" b "> e. Word V ) | 
						
							| 37 |  | ccatass |  |-  ( ( a e. Word V /\ <" X "> e. Word V /\ <" b "> e. Word V ) -> ( ( a ++ <" X "> ) ++ <" b "> ) = ( a ++ ( <" X "> ++ <" b "> ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( a e. Word V /\ <" X "> e. Word V /\ <" b "> e. Word V ) -> ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) = ( ( a ++ ( <" X "> ++ <" b "> ) ) prefix ( N - 2 ) ) ) | 
						
							| 39 | 30 34 36 38 | syl3anc |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) = ( ( a ++ ( <" X "> ++ <" b "> ) ) prefix ( N - 2 ) ) ) | 
						
							| 40 |  | ccatcl |  |-  ( ( <" X "> e. Word V /\ <" b "> e. Word V ) -> ( <" X "> ++ <" b "> ) e. Word V ) | 
						
							| 41 | 33 35 40 | syl2an |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( <" X "> ++ <" b "> ) e. Word V ) | 
						
							| 42 |  | simpr |  |-  ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) -> ( # ` a ) = ( N - 2 ) ) | 
						
							| 43 | 42 | eqcomd |  |-  ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) -> ( N - 2 ) = ( # ` a ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) = ( # ` a ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( N - 2 ) = ( # ` a ) ) | 
						
							| 46 |  | pfxccatid |  |-  ( ( a e. Word V /\ ( <" X "> ++ <" b "> ) e. Word V /\ ( N - 2 ) = ( # ` a ) ) -> ( ( a ++ ( <" X "> ++ <" b "> ) ) prefix ( N - 2 ) ) = a ) | 
						
							| 47 | 30 41 45 46 | syl3anc |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( ( a ++ ( <" X "> ++ <" b "> ) ) prefix ( N - 2 ) ) = a ) | 
						
							| 48 | 39 47 | eqtr2d |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> a = ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) ) | 
						
							| 49 |  | 1e2m1 |  |-  1 = ( 2 - 1 ) | 
						
							| 50 | 49 | a1i |  |-  ( N e. ( ZZ>= ` 3 ) -> 1 = ( 2 - 1 ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) = ( N - ( 2 - 1 ) ) ) | 
						
							| 52 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. CC ) | 
						
							| 53 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) | 
						
							| 54 |  | 1cnd |  |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. CC ) | 
						
							| 55 | 52 53 54 | subsubd |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 56 | 51 55 | eqtrd |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 1 ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 1 ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 1 ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( N - 1 ) = ( ( N - 2 ) + 1 ) ) | 
						
							| 60 | 59 | fveq2d |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) = ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( ( N - 2 ) + 1 ) ) ) | 
						
							| 61 |  | simpll |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) ) | 
						
							| 62 |  | simprl |  |-  ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) | 
						
							| 63 | 62 | anim1i |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( X e. V /\ b e. V ) ) | 
						
							| 64 |  | ccatw2s1p2 |  |-  ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ b e. V ) ) -> ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( ( N - 2 ) + 1 ) ) = b ) | 
						
							| 65 | 61 63 64 | syl2anc |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( ( N - 2 ) + 1 ) ) = b ) | 
						
							| 66 | 60 65 | eqtr2d |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> b = ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) ) | 
						
							| 67 | 48 66 | opeq12d |  |-  ( ( ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ b e. V ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 68 | 67 | exp31 |  |-  ( ( a e. Word V /\ ( # ` a ) = ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 69 | 68 | 3ad2antl1 |  |-  ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) /\ ( a ` 0 ) = X ) -> ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 71 | 70 | com12 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) /\ ( a ` 0 ) = X ) -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 72 | 71 | 3adant1 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( a e. Word V /\ A. i e. ( 0 ..^ ( ( # ` a ) - 1 ) ) { ( a ` i ) , ( a ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` a ) , ( a ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` a ) = ( N - 2 ) ) /\ ( a ` 0 ) = X ) -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 73 | 29 72 | sylbid |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( a e. F -> ( b e. V -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 74 | 73 | com23 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( b e. V -> ( a e. F -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 75 | 19 74 | syl5 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( b e. ( G NeighbVtx X ) -> ( a e. F -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 76 | 75 | com13 |  |-  ( a e. F -> ( b e. ( G NeighbVtx X ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) ) | 
						
							| 77 | 76 | imp |  |-  ( ( a e. F /\ b e. ( G NeighbVtx X ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) ) | 
						
							| 79 | 78 | imp |  |-  ( ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> <. a , b >. = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 81 | 18 80 | eqtrd |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> p = <. ( ( ( a ++ <" X "> ) ++ <" b "> ) prefix ( N - 2 ) ) , ( ( ( a ++ <" X "> ) ++ <" b "> ) ` ( N - 1 ) ) >. ) | 
						
							| 82 | 11 17 81 | rspcedvd |  |-  ( ( ( ( a ++ <" X "> ) ++ <" b "> ) e. ( X C N ) /\ ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) | 
						
							| 83 | 10 82 | mpancom |  |-  ( ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) | 
						
							| 84 | 83 | ex |  |-  ( ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) ) | 
						
							| 85 | 84 | exlimivv |  |-  ( E. a E. b ( p = <. a , b >. /\ ( a e. F /\ b e. ( G NeighbVtx X ) ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) ) | 
						
							| 86 | 6 85 | sylbi |  |-  ( p e. ( F X. ( G NeighbVtx X ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) ) | 
						
							| 87 | 86 | impcom |  |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ p e. ( F X. ( G NeighbVtx X ) ) ) -> E. x e. ( X C N ) p = ( T ` x ) ) | 
						
							| 88 | 87 | ralrimiva |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> A. p e. ( F X. ( G NeighbVtx X ) ) E. x e. ( X C N ) p = ( T ` x ) ) | 
						
							| 89 |  | dffo3 |  |-  ( T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) <-> ( T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) /\ A. p e. ( F X. ( G NeighbVtx X ) ) E. x e. ( X C N ) p = ( T ` x ) ) ) | 
						
							| 90 | 5 88 89 | sylanbrc |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) |