| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  | 
						
							| 2 |  | extwwlkfab.c |  | 
						
							| 3 |  | extwwlkfab.f |  | 
						
							| 4 |  | numclwwlk.t |  | 
						
							| 5 | 1 2 3 4 | numclwwlk1lem2f |  | 
						
							| 6 |  | elxp |  | 
						
							| 7 | 1 2 3 | numclwwlk1lem2foa |  | 
						
							| 8 | 7 | com12 |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 9 | imp |  | 
						
							| 11 |  | simpl |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 | 12 | eqeq2d |  | 
						
							| 14 | 1 2 3 4 | numclwwlk1lem2fv |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 15 | eqeq2d |  | 
						
							| 17 | 13 16 | sylan9bbr |  | 
						
							| 18 |  | simprll |  | 
						
							| 19 | 1 | nbgrisvtx |  | 
						
							| 20 | 3 | eleq2i |  | 
						
							| 21 |  | uz3m2nn |  | 
						
							| 22 | 21 | nnne0d |  | 
						
							| 23 | 22 | 3ad2ant3 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 24 | clwwlknonel |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 | 20 26 | bitrid |  | 
						
							| 28 |  | df-3an |  | 
						
							| 29 | 27 28 | bitrdi |  | 
						
							| 30 |  | simplll |  | 
						
							| 31 |  | s1cl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | s1cl |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 |  | ccatass |  | 
						
							| 38 | 37 | oveq1d |  | 
						
							| 39 | 30 34 36 38 | syl3anc |  | 
						
							| 40 |  | ccatcl |  | 
						
							| 41 | 33 35 40 | syl2an |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 42 | eqcomd |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | pfxccatid |  | 
						
							| 47 | 30 41 45 46 | syl3anc |  | 
						
							| 48 | 39 47 | eqtr2d |  | 
						
							| 49 |  | 1e2m1 |  | 
						
							| 50 | 49 | a1i |  | 
						
							| 51 | 50 | oveq2d |  | 
						
							| 52 |  | eluzelcn |  | 
						
							| 53 |  | 2cnd |  | 
						
							| 54 |  | 1cnd |  | 
						
							| 55 | 52 53 54 | subsubd |  | 
						
							| 56 | 51 55 | eqtrd |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 | 57 | adantl |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 |  | simpll |  | 
						
							| 62 |  | simprl |  | 
						
							| 63 | 62 | anim1i |  | 
						
							| 64 |  | ccatw2s1p2 |  | 
						
							| 65 | 61 63 64 | syl2anc |  | 
						
							| 66 | 60 65 | eqtr2d |  | 
						
							| 67 | 48 66 | opeq12d |  | 
						
							| 68 | 67 | exp31 |  | 
						
							| 69 | 68 | 3ad2antl1 |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 70 | com12 |  | 
						
							| 72 | 71 | 3adant1 |  | 
						
							| 73 | 29 72 | sylbid |  | 
						
							| 74 | 73 | com23 |  | 
						
							| 75 | 19 74 | syl5 |  | 
						
							| 76 | 75 | com13 |  | 
						
							| 77 | 76 | imp |  | 
						
							| 78 | 77 | adantl |  | 
						
							| 79 | 78 | imp |  | 
						
							| 80 | 79 | adantl |  | 
						
							| 81 | 18 80 | eqtrd |  | 
						
							| 82 | 11 17 81 | rspcedvd |  | 
						
							| 83 | 10 82 | mpancom |  | 
						
							| 84 | 83 | ex |  | 
						
							| 85 | 84 | exlimivv |  | 
						
							| 86 | 6 85 | sylbi |  | 
						
							| 87 | 86 | impcom |  | 
						
							| 88 | 87 | ralrimiva |  | 
						
							| 89 |  | dffo3 |  | 
						
							| 90 | 5 88 89 | sylanbrc |  |