| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 2 |  | nn0fz0 |  |-  ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( 0 ... ( # ` A ) ) ) | 
						
							| 3 | 1 2 | sylib |  |-  ( A e. Word V -> ( # ` A ) e. ( 0 ... ( # ` A ) ) ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( # ` A ) e. ( 0 ... ( # ` A ) ) ) | 
						
							| 5 |  | eleq1 |  |-  ( N = ( # ` A ) -> ( N e. ( 0 ... ( # ` A ) ) <-> ( # ` A ) e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( N e. ( 0 ... ( # ` A ) ) <-> ( # ` A ) e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 7 | 4 6 | mpbird |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> N e. ( 0 ... ( # ` A ) ) ) | 
						
							| 8 |  | eqid |  |-  ( # ` A ) = ( # ` A ) | 
						
							| 9 | 8 | pfxccatpfx1 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) prefix N ) = ( A prefix N ) ) | 
						
							| 10 | 7 9 | syld3an3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( ( A ++ B ) prefix N ) = ( A prefix N ) ) | 
						
							| 11 |  | oveq2 |  |-  ( N = ( # ` A ) -> ( A prefix N ) = ( A prefix ( # ` A ) ) ) | 
						
							| 12 | 11 | 3ad2ant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( A prefix N ) = ( A prefix ( # ` A ) ) ) | 
						
							| 13 |  | pfxid |  |-  ( A e. Word V -> ( A prefix ( # ` A ) ) = A ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( A prefix ( # ` A ) ) = A ) | 
						
							| 15 | 10 12 14 | 3eqtrd |  |-  ( ( A e. Word V /\ B e. Word V /\ N = ( # ` A ) ) -> ( ( A ++ B ) prefix N ) = A ) |