| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  |-  L = ( # ` A ) | 
						
							| 2 |  | 3simpa |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 3 |  | elfznn0 |  |-  ( N e. ( 0 ... L ) -> N e. NN0 ) | 
						
							| 4 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( N e. ( 0 ... L ) -> 0 e. ( 0 ... N ) ) | 
						
							| 6 | 1 | oveq2i |  |-  ( 0 ... L ) = ( 0 ... ( # ` A ) ) | 
						
							| 7 | 6 | eleq2i |  |-  ( N e. ( 0 ... L ) <-> N e. ( 0 ... ( # ` A ) ) ) | 
						
							| 8 | 7 | biimpi |  |-  ( N e. ( 0 ... L ) -> N e. ( 0 ... ( # ` A ) ) ) | 
						
							| 9 | 5 8 | jca |  |-  ( N e. ( 0 ... L ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 11 |  | swrdccatin1 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( A substr <. 0 , N >. ) ) ) | 
						
							| 12 | 2 10 11 | sylc |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( A substr <. 0 , N >. ) ) | 
						
							| 13 |  | ccatcl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A ++ B ) e. Word V ) | 
						
							| 15 | 3 | 3ad2ant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> N e. NN0 ) | 
						
							| 16 | 14 15 | jca |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) e. Word V /\ N e. NN0 ) ) | 
						
							| 17 |  | pfxval |  |-  ( ( ( A ++ B ) e. Word V /\ N e. NN0 ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) | 
						
							| 19 |  | pfxval |  |-  ( ( A e. Word V /\ N e. NN0 ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) | 
						
							| 20 | 3 19 | sylan2 |  |-  ( ( A e. Word V /\ N e. ( 0 ... L ) ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) | 
						
							| 21 | 20 | 3adant2 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) | 
						
							| 22 | 12 18 21 | 3eqtr4d |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) prefix N ) = ( A prefix N ) ) |