| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l | ⊢ 𝐿  =  ( ♯ ‘ 𝐴 ) | 
						
							| 2 |  | 3simpa | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 ) ) | 
						
							| 3 |  | elfznn0 | ⊢ ( 𝑁  ∈  ( 0 ... 𝐿 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | 0elfz | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑁  ∈  ( 0 ... 𝐿 )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 6 | 1 | oveq2i | ⊢ ( 0 ... 𝐿 )  =  ( 0 ... ( ♯ ‘ 𝐴 ) ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( 𝑁  ∈  ( 0 ... 𝐿 )  ↔  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑁  ∈  ( 0 ... 𝐿 )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 9 | 5 8 | jca | ⊢ ( 𝑁  ∈  ( 0 ... 𝐿 )  →  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 11 |  | swrdccatin1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 0  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 0 ,  𝑁 〉 ) ) ) | 
						
							| 12 | 2 10 11 | sylc | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 13 |  | ccatcl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 15 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 | 14 15 | jca | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( ( 𝐴  ++  𝐵 )  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 17 |  | pfxval | ⊢ ( ( ( 𝐴  ++  𝐵 )  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 19 |  | pfxval | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  prefix  𝑁 )  =  ( 𝐴  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 20 | 3 19 | sylan2 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( 𝐴  prefix  𝑁 )  =  ( 𝐴  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 21 | 20 | 3adant2 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( 𝐴  prefix  𝑁 )  =  ( 𝐴  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 22 | 12 18 21 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... 𝐿 ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( 𝐴  prefix  𝑁 ) ) |