| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l | ⊢ 𝐿  =  ( ♯ ‘ 𝐴 ) | 
						
							| 2 |  | pfxccatpfx2.m | ⊢ 𝑀  =  ( ♯ ‘ 𝐵 ) | 
						
							| 3 |  | ccatcl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 5 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 6 | 1 5 | eqeltrid | ⊢ ( 𝐴  ∈  Word  𝑉  →  𝐿  ∈  ℕ0 ) | 
						
							| 7 |  | elfzuz | ⊢ ( 𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) | 
						
							| 8 |  | peano2nn0 | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝐿  +  1 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | anim1i | ⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) )  →  ( ( 𝐿  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 10 | 6 7 9 | syl2an | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐿  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 11 | 10 | 3adant2 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐿  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 12 |  | eluznn0 | ⊢ ( ( ( 𝐿  +  1 )  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | pfxval | ⊢ ( ( ( 𝐴  ++  𝐵 )  ∈  Word  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 15 | 4 13 14 | syl2anc | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 ) ) | 
						
							| 16 |  | 3simpa | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 ) ) | 
						
							| 17 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 18 |  | 0elfz | ⊢ ( 𝐿  ∈  ℕ0  →  0  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  0  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 20 | 5 | nn0zd | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 21 | 1 20 | eqeltrid | ⊢ ( 𝐴  ∈  Word  𝑉  →  𝐿  ∈  ℤ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  𝐿  ∈  ℤ ) | 
						
							| 23 |  | uzid | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 24 |  | peano2uz | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 𝐿 )  →  ( 𝐿  +  1 )  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 25 |  | fzss1 | ⊢ ( ( 𝐿  +  1 )  ∈  ( ℤ≥ ‘ 𝐿 )  →  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) )  ⊆  ( 𝐿 ... ( 𝐿  +  𝑀 ) ) ) | 
						
							| 26 | 22 23 24 25 | 4syl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) )  ⊆  ( 𝐿 ... ( 𝐿  +  𝑀 ) ) ) | 
						
							| 27 | 2 | eqcomi | ⊢ ( ♯ ‘ 𝐵 )  =  𝑀 | 
						
							| 28 | 27 | oveq2i | ⊢ ( 𝐿  +  ( ♯ ‘ 𝐵 ) )  =  ( 𝐿  +  𝑀 ) | 
						
							| 29 | 28 | oveq2i | ⊢ ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) )  =  ( 𝐿 ... ( 𝐿  +  𝑀 ) ) | 
						
							| 30 | 26 29 | sseqtrrdi | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) )  ⊆  ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 31 | 30 | sseld | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) )  →  𝑁  ∈  ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 32 | 31 | 3impia | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  𝑁  ∈  ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 33 | 19 32 | jca | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( 0  ∈  ( 0 ... 𝐿 )  ∧  𝑁  ∈  ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 34 | 1 | pfxccatin12 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 0  ∈  ( 0 ... 𝐿 )  ∧  𝑁  ∈  ( 𝐿 ... ( 𝐿  +  ( ♯ ‘ 𝐵 ) ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 )  =  ( ( 𝐴  substr  〈 0 ,  𝐿 〉 )  ++  ( 𝐵  prefix  ( 𝑁  −  𝐿 ) ) ) ) ) | 
						
							| 35 | 16 33 34 | sylc | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  𝑁 〉 )  =  ( ( 𝐴  substr  〈 0 ,  𝐿 〉 )  ++  ( 𝐵  prefix  ( 𝑁  −  𝐿 ) ) ) ) | 
						
							| 36 | 1 | opeq2i | ⊢ 〈 0 ,  𝐿 〉  =  〈 0 ,  ( ♯ ‘ 𝐴 ) 〉 | 
						
							| 37 | 36 | oveq2i | ⊢ ( 𝐴  substr  〈 0 ,  𝐿 〉 )  =  ( 𝐴  substr  〈 0 ,  ( ♯ ‘ 𝐴 ) 〉 ) | 
						
							| 38 |  | pfxval | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) )  =  ( 𝐴  substr  〈 0 ,  ( ♯ ‘ 𝐴 ) 〉 ) ) | 
						
							| 39 | 5 38 | mpdan | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) )  =  ( 𝐴  substr  〈 0 ,  ( ♯ ‘ 𝐴 ) 〉 ) ) | 
						
							| 40 |  | pfxid | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 41 | 39 40 | eqtr3d | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  substr  〈 0 ,  ( ♯ ‘ 𝐴 ) 〉 )  =  𝐴 ) | 
						
							| 42 | 37 41 | eqtrid | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  substr  〈 0 ,  𝐿 〉 )  =  𝐴 ) | 
						
							| 43 | 42 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( 𝐴  substr  〈 0 ,  𝐿 〉 )  =  𝐴 ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐴  substr  〈 0 ,  𝐿 〉 )  ++  ( 𝐵  prefix  ( 𝑁  −  𝐿 ) ) )  =  ( 𝐴  ++  ( 𝐵  prefix  ( 𝑁  −  𝐿 ) ) ) ) | 
						
							| 45 | 15 35 44 | 3eqtrd | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( ( 𝐿  +  1 ) ... ( 𝐿  +  𝑀 ) ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( 𝐴  ++  ( 𝐵  prefix  ( 𝑁  −  𝐿 ) ) ) ) |