| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdccatin2.l |  |-  L = ( # ` A ) | 
						
							| 2 |  | pfxccatpfx2.m |  |-  M = ( # ` B ) | 
						
							| 3 |  | ccatcl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( A ++ B ) e. Word V ) | 
						
							| 5 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 6 | 1 5 | eqeltrid |  |-  ( A e. Word V -> L e. NN0 ) | 
						
							| 7 |  | elfzuz |  |-  ( N e. ( ( L + 1 ) ... ( L + M ) ) -> N e. ( ZZ>= ` ( L + 1 ) ) ) | 
						
							| 8 |  | peano2nn0 |  |-  ( L e. NN0 -> ( L + 1 ) e. NN0 ) | 
						
							| 9 | 8 | anim1i |  |-  ( ( L e. NN0 /\ N e. ( ZZ>= ` ( L + 1 ) ) ) -> ( ( L + 1 ) e. NN0 /\ N e. ( ZZ>= ` ( L + 1 ) ) ) ) | 
						
							| 10 | 6 7 9 | syl2an |  |-  ( ( A e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( L + 1 ) e. NN0 /\ N e. ( ZZ>= ` ( L + 1 ) ) ) ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( L + 1 ) e. NN0 /\ N e. ( ZZ>= ` ( L + 1 ) ) ) ) | 
						
							| 12 |  | eluznn0 |  |-  ( ( ( L + 1 ) e. NN0 /\ N e. ( ZZ>= ` ( L + 1 ) ) ) -> N e. NN0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> N e. NN0 ) | 
						
							| 14 |  | pfxval |  |-  ( ( ( A ++ B ) e. Word V /\ N e. NN0 ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) | 
						
							| 15 | 4 13 14 | syl2anc |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) | 
						
							| 16 |  | 3simpa |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( A e. Word V /\ B e. Word V ) ) | 
						
							| 17 | 6 | 3ad2ant1 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> L e. NN0 ) | 
						
							| 18 |  | 0elfz |  |-  ( L e. NN0 -> 0 e. ( 0 ... L ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> 0 e. ( 0 ... L ) ) | 
						
							| 20 | 5 | nn0zd |  |-  ( A e. Word V -> ( # ` A ) e. ZZ ) | 
						
							| 21 | 1 20 | eqeltrid |  |-  ( A e. Word V -> L e. ZZ ) | 
						
							| 22 | 21 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> L e. ZZ ) | 
						
							| 23 |  | uzid |  |-  ( L e. ZZ -> L e. ( ZZ>= ` L ) ) | 
						
							| 24 |  | peano2uz |  |-  ( L e. ( ZZ>= ` L ) -> ( L + 1 ) e. ( ZZ>= ` L ) ) | 
						
							| 25 |  | fzss1 |  |-  ( ( L + 1 ) e. ( ZZ>= ` L ) -> ( ( L + 1 ) ... ( L + M ) ) C_ ( L ... ( L + M ) ) ) | 
						
							| 26 | 22 23 24 25 | 4syl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( L + 1 ) ... ( L + M ) ) C_ ( L ... ( L + M ) ) ) | 
						
							| 27 | 2 | eqcomi |  |-  ( # ` B ) = M | 
						
							| 28 | 27 | oveq2i |  |-  ( L + ( # ` B ) ) = ( L + M ) | 
						
							| 29 | 28 | oveq2i |  |-  ( L ... ( L + ( # ` B ) ) ) = ( L ... ( L + M ) ) | 
						
							| 30 | 26 29 | sseqtrrdi |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( L + 1 ) ... ( L + M ) ) C_ ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 31 | 30 | sseld |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( ( L + 1 ) ... ( L + M ) ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 32 | 31 | 3impia |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) | 
						
							| 33 | 19 32 | jca |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( 0 e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) | 
						
							| 34 | 1 | pfxccatin12 |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( 0 e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( ( A substr <. 0 , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) | 
						
							| 35 | 16 33 34 | sylc |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( ( A substr <. 0 , L >. ) ++ ( B prefix ( N - L ) ) ) ) | 
						
							| 36 | 1 | opeq2i |  |-  <. 0 , L >. = <. 0 , ( # ` A ) >. | 
						
							| 37 | 36 | oveq2i |  |-  ( A substr <. 0 , L >. ) = ( A substr <. 0 , ( # ` A ) >. ) | 
						
							| 38 |  | pfxval |  |-  ( ( A e. Word V /\ ( # ` A ) e. NN0 ) -> ( A prefix ( # ` A ) ) = ( A substr <. 0 , ( # ` A ) >. ) ) | 
						
							| 39 | 5 38 | mpdan |  |-  ( A e. Word V -> ( A prefix ( # ` A ) ) = ( A substr <. 0 , ( # ` A ) >. ) ) | 
						
							| 40 |  | pfxid |  |-  ( A e. Word V -> ( A prefix ( # ` A ) ) = A ) | 
						
							| 41 | 39 40 | eqtr3d |  |-  ( A e. Word V -> ( A substr <. 0 , ( # ` A ) >. ) = A ) | 
						
							| 42 | 37 41 | eqtrid |  |-  ( A e. Word V -> ( A substr <. 0 , L >. ) = A ) | 
						
							| 43 | 42 | 3ad2ant1 |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( A substr <. 0 , L >. ) = A ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( A substr <. 0 , L >. ) ++ ( B prefix ( N - L ) ) ) = ( A ++ ( B prefix ( N - L ) ) ) ) | 
						
							| 45 | 15 35 44 | 3eqtrd |  |-  ( ( A e. Word V /\ B e. Word V /\ N e. ( ( L + 1 ) ... ( L + M ) ) ) -> ( ( A ++ B ) prefix N ) = ( A ++ ( B prefix ( N - L ) ) ) ) |